Resistance distance in wheels and fans

  • R. B. BapatEmail author
  • Somit Gupta


The wheel graph is the join of a single vertex and a cycle, while the fan graph is the join of a single vertex and a path. The resistance distance between any two vertices of a wheel and a fan is obtained. The resistances are related to Fibonacci numbers and generalized Fibonacci numbers. The derivation is based on evaluating determinants of submatrices of the Laplacian matrix. A combinatorial argument is also illustrated. A connection with the problem of squaring a rectangle is described.

Key words

Wheel graph fan graph resistance distance generalized Fibonacci numbers squaring a rectangle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Bapat, Resistance distance in graphs, Mathematics Student, 68(1–4) (1999), 87–98.MathSciNetGoogle Scholar
  2. 2.
    Adi Ben-Israel and Thomas N. E. Greville, Generalized Inverses. Theory and Applications, Second ed., Springer, New York, 2003.zbMATHGoogle Scholar
  3. 3.
    Belá Bollobás, Modern Graph Theory, Springer, New York, 1998.zbMATHGoogle Scholar
  4. 4.
    J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008.zbMATHGoogle Scholar
  5. 5.
    R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte, The dissection of rectangles into squares, Duke Math. Journal, 7 (1940), 312–40.CrossRefMathSciNetGoogle Scholar
  6. 6.
    S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, 1979.Google Scholar
  7. 7.
    Chris Godsil and Gordon Royle, Algebraic Graph Theory, Springer, 2001.Google Scholar
  8. 8.
    Dan Kalman and Robert Mena, The Fibonacci numbers — exposed, Math. Magazine, 76(3) (2003), 167–181.MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Second ed., Pearson Education, 2007.Google Scholar
  10. 10.
    Frederick V. Henle and James M. Henle, Squaring the plane, Amer. Math. Monthly, 115(1) (2008), 3–12.zbMATHMathSciNetGoogle Scholar
  11. 11.
    D. J. Klien, Resistance-distance sum rules, Croatica Chemica Acta, 75(2) (2002), 633–649.Google Scholar
  12. 12.
    D. J. Klein and M. Randić, Resistance distance, Journal of Mathematical Chemistry, 12 (1993), 81–95.CrossRefMathSciNetGoogle Scholar
  13. 13.
    W. T. Tutte, A theory of 3-connected graphs, Nederl. Akad. Wentensch. Proc. Ser. A, 23 (1961), 441–55.MathSciNetGoogle Scholar
  14. 14.
    Wenjun Xiao and Ivan Gutman, On resistance matrices, MATCH Commun. Math. Comput. Chem., 49 (2003), 67–81.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Wenjun Xiao and Ivan Gutman, Relations between resistance and Laplacian matrices and their applications, MATCH Commun. Math. Comput. Chem., 51 (2004), 119–127.zbMATHMathSciNetGoogle Scholar
  16. 16.
    P. Chebotarev, Spanning forests and the golden ratio. Discrete Applied Mathematics, 156(5) (2008), 813–821.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Chebotarev and E. Shamis, The forest metrics for graph vertices, Electronic Notes in Discrete Mathematics, 11 (2002), 98–107.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Thomas Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.zbMATHGoogle Scholar
  19. 19.
    S. Basin, Generalized Fibonacci sequences and squared rectangles, Amer. Math. Monthly, 70(3) (1963), 372–379.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© The Indian National Science Academy 2010

Authors and Affiliations

  1. 1.Indian Statistical InstituteNew DelhiIndia
  2. 2.National Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations