Advertisement

An online resource for marine fungi

  • E. B. Gareth Jones
  • Ka-Lai Pang
  • Mohamed A. Abdel-WahabEmail author
  • Bettina Scholz
  • Kevin D. Hyde
  • Teun Boekhout
  • Rainer Ebel
  • Mostafa E. Rateb
  • Linda Henderson
  • Jariya Sakayaroj
  • Satinee Suetrong
  • Monika C. Dayarathne
  • Vinit Kumar
  • Seshagiri Raghukumar
  • K. R. Sridhar
  • Ali H. A. Bahkali
  • Frank H. Gleason
  • Chada Norphanphoun
Article

Abstract

Index Fungorum, Species Fungorum and MycoBank are the key fungal nomenclature and taxonomic databases that can be sourced to find taxonomic details concerning fungi, while DNA sequence data can be sourced from the NCBI, EBI and UNITE databases. Nomenclature and ecological data on freshwater fungi can be accessed on http://fungi.life.illinois.edu/, while http://www.marinespecies.org/provides a comprehensive list of names of marine organisms, including information on their synonymy. Previous websites however have little information on marine fungi and their ecology, beside articles that deal with marine fungi, especially those published in the nineteenth and early twentieth centuries may not be accessible to those working in third world countries. To address this problem, a new website www.marinefungi.org was set up and is introduced in this paper. This website provides a search facility to genera of marine fungi, full species descriptions, key to species and illustrations, an up to date classification of all recorded marine fungi which includes all fungal groups (Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, Mucoromycota and fungus-like organisms e.g. Thraustochytriales), and listing recent publications. Currently, 1257 species are listed in the marine fungi website (www.marinefungi.org), in 539 genera, 74 orders, 168 families, 20 classes and five phyla, with new taxa continuing to be described. The website has curators with specialist mycological expertise who help to provide update data on the classification of marine fungi. This article also reviews knowledge of marine fungi covering a wide range of topics: their higher classification, ecology and world distribution, role in energy transfer in the oceans, origin and new chemical structures. An updated classification of marine fungi is also included. We would like to invite all mycologists to contribute to this innovative website.

Keywords

Fungal classification marine fungi website High-throughput sequencing techniques Fungal diversity Origin of marine fungi 

Notes

Acknowledgements

Gareth Jones is supported under the Distinguished Scientist Fellowship Program (DSFP), King Saud University, Kingdom of Saudi Arabia. Ka-Lai Pang thanks the Ministry of Science and Technology, Taiwan, for financial support (105-2621-B-019 -002-). Kevin D. Hyde, Monika C. Dayarathne, Vinit Kumar and Chada Norphanphoun would like to thank the Thailand Research Fund grant entitled “Biodiversity, Phylogeny and role of fungal endobiotes on above parts of Rhizophora apiculata and Nypa fruticans” (grant no RSA5980068) and Mae Fah Luang University for the grant ‘‘Diseases of mangrove trees and maintenance of good forestry practice’’ (grant number: 60201000201) for support. Monika Dayarathne would like to acknowledge Dr. Wasana de Silva for her help in preparation of maps.

References

  1. Abdel-Fattah JH, Moubasher M, Abdel-Hafez AH, Abdel-Hafez SI (1977) Studies on mycoflora of salt marshes in Egypt. 1. Sugar fungi. Mycopath 61:19–26CrossRefGoogle Scholar
  2. Abdel-Wahab MA (2005) Diversity of marine fungi from Egyptian Red Sea mangroves. Bot Mar 48:348–355CrossRefGoogle Scholar
  3. Abdel-Wahab MA, Bahkali AHA (2012) Taxonomy of filamentous anamorphic marine fungi: morphology and molecular evidence. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, pp 65–90Google Scholar
  4. Abdel-Wahab MA, Jones EBG (2000) Three new marine ascomycetes from driftwood in Australian sand dunes. Mycoscience 41:379–388CrossRefGoogle Scholar
  5. Abdel-Wahab MA, Pang KL, Nagahama T, Abdel-Aziz FA et al (2010) Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulospora with the description of eight new genera and four new species. Mycol Prog 9:537–558CrossRefGoogle Scholar
  6. Abdel-Wahab MA, Hodhod MS, Bahkali AHA, Jones EBG (2014) Marine fungi of Saudi Arabia. Bot Mar 57:323–335CrossRefGoogle Scholar
  7. Abdel-Wahab MA, Dayarathne MC, Suetrong S, Guo SY et al (2017) New saprobic marine fungi and a new combination. Bot Mar 60:469–488CrossRefGoogle Scholar
  8. Abdel-Wahab MA, Jones EBG, Bahkali AHA, Elgorban AM (2019) Marine fungi from Red Sea mangroves in Saudi Arabia with Fulvocentrum rubrum sp. nov. (Torpedosporales, Ascomycota). Nova Hedwig 108:365–377CrossRefGoogle Scholar
  9. Abraham EP (1979) A glimpse of the early history of the cephalosporins. Rev Infect Dis 1:99–105CrossRefPubMedGoogle Scholar
  10. Adl SM, Simpson AG, Lane CE, Lukeš J et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493CrossRefPubMedPubMedCentralGoogle Scholar
  11. Alderman DJ, Jones EBG (1967) Shell disease of Ostrea edulis L. Nature 216:797–798CrossRefGoogle Scholar
  12. Alderman DJ, Jones EBG (1971) Shell disease of oysters. Fish Invest Ser 11(16):1–16Google Scholar
  13. Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. Wiley, New YorkGoogle Scholar
  14. Alias SA, Jones EBG (2010) Fungi from mangroves of Malaysia. Inst Ocean Earth Sci Uni Malaya, MalaysiaGoogle Scholar
  15. Alias SA, Moss ST, Jones EBG (2001) Cucullosporella mangrovei, ultrastructure of ascospsores and their appendages. Mycoscience 42:405–411CrossRefGoogle Scholar
  16. Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom & Church), a fungal pathogen of Caribbean Sea fan corals. Hydrobiologia 460:105–111CrossRefGoogle Scholar
  17. Allen JRL, Pye K (1992) Coastal saltmarshes: their nature and importance. In: Allen JRL, Pye K (eds) Saltmarshes: morphodynamics, conservation, and engineering significance. Cambridge University Press, CambridgeGoogle Scholar
  18. Almeida C, Hemberger Y, Schmitt SM, Bouhired S et al (2012) Marilines A-C: novel phthalimidines from the sponge-derived fungus Stachylidium sp. Chem Eur J 18:8827–8834CrossRefPubMedGoogle Scholar
  19. Al-Nasrawi HG, Hughes AR (2012) Fungal diversity associated with salt marsh plants Spartina alterniflora and Juncus roemerianus in Florida. Jordan J Biol Sci 5:247–254Google Scholar
  20. Alva P, Mckenzie EHC, Pointing SP, Pena-Murala R et al (2002) Do seagrasses harbour endobiotes? In: Hyde KD (ed) Fungi in marine environments. Fungal Divers Press, Hong Kong, pp 167–178Google Scholar
  21. Am-In S, Yongmanitchai W, Limtong S (2008) Kluyveromyces siamensis sp. nov., an ascomycetous yeast isolated from water in a mangrove forest in Ranong Province, Thailand. FEMS Yeast Res 8:823–828CrossRefPubMedGoogle Scholar
  22. Amend AS (2014) From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog 10:e1004277CrossRefPubMedPubMedCentralGoogle Scholar
  23. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fung Biol Rev 21:51–66CrossRefGoogle Scholar
  24. Apinis AE, Chesters CGC (1964) Ascomycetes of some salt marshes and sand dunes. Trans Br Mycol Soc 47:419–435CrossRefGoogle Scholar
  25. Araujo FV, Hagler AN (2011) Kluyveromyces aestuarii, a potential environmental quality indicator for mangroves in the State of Rio de Janeiro, Brazil. Braz J Microbiol 42:954–958CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ariyawansa HA, Tanaka K, Thambugala KM, Phookamasak R et al (2014) A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae). Fungal Divers 68:699–699CrossRefGoogle Scholar
  27. Bai M, Sen B, Wang Q, Zie Y et al (2018) Molecular detection and spatiotemporal characterization of Labyrinthulomycete protist diversity in the coastal waters along the Pearl River Delta. Microb Ecol 2:89.  https://doi.org/10.1007/s00248-018-1235-8 CrossRefGoogle Scholar
  28. Baldauf SI (2003) The deep roots of Eukaryotes. Science 300:415–424CrossRefGoogle Scholar
  29. Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467Google Scholar
  30. Bärlocher F, Newell SY (1994) Growth of the saltmarsh periwinkle Littoraria irrorata on fungal and cordgrass diets. Mar Biol 118:109–114CrossRefGoogle Scholar
  31. Barr ME (1983) The ascomycete connection. Mycologia 75:1–13CrossRefGoogle Scholar
  32. Bass D, Howe A, Brown N, Barton H et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077CrossRefPubMedGoogle Scholar
  33. Bates SS, Garrison DL, Horner RA (1998) Bloom dynamics and physiology of domoic-acid-producing Pseudonitzschia species. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer-Verlag, Heidelberg, Germany, pp. 267–292Google Scholar
  34. Bauch R (1936) Ophiobolus kniepii, ein neuer parasitischer Pyrenomycet auf Kalkalgen. Pubbl Staz Zool Napoli 15:377–391Google Scholar
  35. Bauer R, Luta M, Piatek M, Vanky K et al (2007) Flamingomyces and Parvulago, new genera of marine smut fungi (Ustialinomycotina). Mycol Res 111:1199–1206CrossRefPubMedGoogle Scholar
  36. Beimforde C, Feldberg K, Nylinder S, Rikkinen J et al (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398CrossRefPubMedGoogle Scholar
  37. Beraldi-Campesi H (2013) Early life on land and the first terrestrial ecosystems. Ecol Process 2:1–17CrossRefGoogle Scholar
  38. Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71:1114–1127CrossRefGoogle Scholar
  39. Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—how close are we? Fungal Biol Rev 24:1–16CrossRefGoogle Scholar
  40. Bessey EA (1950) Morphology and taxonomy of fungi. McCraw-Hill, New YorkCrossRefGoogle Scholar
  41. Binder M, Hibbett DS (2001) Phylogenetic relationships of the marine gasteromycete Nia vibrissa. Mycologia 93:679–688CrossRefGoogle Scholar
  42. Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary relationships of Mycaureola dilseae (Agaricales), a basidiomycetes pathogen of a subtidal Rhodophyte. Am J Bot 93:547–556CrossRefPubMedGoogle Scholar
  43. Blackwell M (2011) The Fungi: 1, 2, 3. 5.1 million species? Am J Bot 98:426–438CrossRefPubMedGoogle Scholar
  44. Bochdansky AB, Clouse MA, Herndl GJ (2017) Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J 11:362–373CrossRefPubMedGoogle Scholar
  45. Boonyuen N, Chuaseeharonnacha C, Suetrong S, Sri-Indrasutdh V et al (2011) Savoryellales (Hypocreomycetideae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia and Savoryella. Mycologia 103:1351–1352CrossRefPubMedGoogle Scholar
  46. Bovio E, Gnavi G, Prigione V, Spina et al (2016) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318CrossRefPubMedGoogle Scholar
  47. Bovio E, Garzoli L, Poli A, Prigione V et al (2018) The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fungal Syst Evol 1:141–167CrossRefGoogle Scholar
  48. Bower SM (1987) Labyrinthuloides haliotidis (Protozoa: Labyrinthomorpha), a parasite of juvenile abalone in a British Columbia mariculture facility. Can J Zool 65:1996–2007CrossRefGoogle Scholar
  49. Bower SM (2000) Infectious diseases of ablone (Haliotis sp.) and risks associated with transplanatation. In: Campbell A (ed) Workshop on rebuilding albalone stocks in British Columbia. NRC Research News, Ottawa, pp 111–122Google Scholar
  50. Buatong J, Chaowalit P, Rukachaisirikul V (2012) Diversity of endophytic and marine-derived fungi associated with marine plants and animals. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin, pp 291–328Google Scholar
  51. Bucher VVC, Hyde KD, Pointing SB, Reddy CA (2004) Production of wood decay enzymes, mass loss and lignin solubilization in wood by marine ascomycetes and their anamorphs. Fungal Divers 15:1–14Google Scholar
  52. Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163CrossRefPubMedGoogle Scholar
  53. Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P et al (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal ventsemi. Environ Microbiol 11:1588–1600CrossRefPubMedGoogle Scholar
  54. Byrne PJ, Jones EBG (1974) Lignicolous marine fungi. Veroff Inst Meeresforsch Bremerhaven Supplement 5:301–320Google Scholar
  55. Campbell J, Anderson JL, Shearer CA (2003) Systematics of Halosarpheia based on morphological and molecular data. Mycologia 95:530–552CrossRefPubMedGoogle Scholar
  56. Campbell J, Volkmann-Kohlmeyer B, Gräfenhan T, Spataofora JW et al (2005) A reevaluation of Lulworthiales: relationships based on 18S and 28S rDNA. Mycol Res 109:556–568CrossRefPubMedPubMedCentralGoogle Scholar
  57. Carter GT, Berman VS (2016) Marine natural propducts in Pharma: how industry missed the boat. In: Baker BJ (ed) Marine Biomedicine, from beach to bedside. CRC Press, New York, pp 531–539Google Scholar
  58. Chang Y, Wang S, Sekimoto S, Aerts AL et al (2015) Phylogenomic analyses indicate that early fungi evolved digesting cell walls of algal ancestors of land plants. Genome Biol Evol 7:1590–1601CrossRefPubMedPubMedCentralGoogle Scholar
  59. Chen X, Si L, Liu D, Proksch P et al (2015) Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin. Eur J Med Chem 93:182–195CrossRefPubMedGoogle Scholar
  60. Chen S, Chen D, Cai R, Cui H et al (2016) Cytotoxic and antibacterial preussomerins from the mangrove endophytic fungus Lasiodiplodia theobromae ZJ-HQ1. J Nat Prod 79:2397–2402CrossRefPubMedGoogle Scholar
  61. Choi J, Kim SH (2017) A genome tree of life for the fungi kingdom. Proc Natl Acad Sci 114:9391–9396CrossRefPubMedGoogle Scholar
  62. Christian RR, Bryant WL, Brinson MM (1990) Juncus roemerianus production and decomposition along gradients of salinity and hydroperiod. Mar Ecol Prog Ser 68:137–145CrossRefGoogle Scholar
  63. Collier JL, Geraci-Yee S, Lilje O, Gleason FH (2017) Possible impacts of zoosporic parasites in diseases of commercially important marine mollusc species: part II. Labyrinthulomycota. Bot Mar 60:409–417CrossRefGoogle Scholar
  64. Comeau AM, Vincent WF, Bernier L, Lovejoy C (2016) Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 6:30120CrossRefPubMedPubMedCentralGoogle Scholar
  65. Cooke MC (1888) New British fungi. Grevillea 16:77–81Google Scholar
  66. Crous PW, Wingfield MJ, Alfeans AC, Silveira SF (1994) Cylindrocladium naviculatum sp. nov., and two new vesiculate hyphomycete genera, Falcocladium and Vesicladiella. Mycotaxon 50:441–458Google Scholar
  67. Cuomo V, Vanzanella F, Fresi E, Cinelli F et al (1985) Fungal flora of Posidonia oceanica and its ecological significance. Trans Br Mycol Soc 84:35–40CrossRefGoogle Scholar
  68. Damare S, Raghukumar C (2008) Fungi and macroag-gregation in deep-sea sediments. Microb Ecol 56:168–177CrossRefPubMedGoogle Scholar
  69. Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res I 53:14–27CrossRefGoogle Scholar
  70. Daniel I, Oger P, Winter R (2006) Origins of life and biochemistry under high-pressure conditions. Chem Soc Rev 35:858–875CrossRefPubMedGoogle Scholar
  71. Dayarathne MC, Maharachchikumbura SSN, Jones EBG, De Silva KHWL et al (2018) The evolution of Savoryellaceae and evidence for its ranking as a subclass. Fungal Divers 84:25–41Google Scholar
  72. Debbab A, Aly AH, Proksch P (2013) Mangrove derived fungal endobiotes—a chemical and biological perception. Fungal Divers 61:1–27CrossRefGoogle Scholar
  73. Demoulin V (1974) The origin of Ascomycetes and Basidiomycetes. The case for a red algal ancestry. Not Rev 40:13–14Google Scholar
  74. Desmazieres JBHJ (1849) Plantes Cryptogames de France, 2nd ed., No. 1778. LilleGoogle Scholar
  75. Devadatha B, Sarma VV, Ariyawansa HA, Jones EBG (2018a) Deniquelata vittalii sp. nov., a novel Indian saprobic marine fungus on Suaeda monoica and two new records of marine fungi from Muthupet mangroves, East coast of India. Mycosphere 9:565–582CrossRefGoogle Scholar
  76. Devadatha B, Sarma VV, Jeewon R, Wanasinghe DN et al (2018b) Thyridariella, a novel marine fungal genus from India: morphological characterization and phylogeny inferred from multigene DNA sequence analyses. Mycol Prog 17:791–804CrossRefGoogle Scholar
  77. Doilom M, Manawasinghe IS, Jeewon R, Jayawardena RS et al (2017) Can ITS sequence data identify fungal endobiotes from cultures? A case study from Rhizophora apiculata. Mycosphere 8:1869–1892CrossRefGoogle Scholar
  78. Doweld A (2014) Nomenclatural novelties. Index Fungorum 123:1Google Scholar
  79. Drake H, Ivarsson M, Bengtson S, Heim C et al (2017) Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat Commun 8:55CrossRefPubMedPubMedCentralGoogle Scholar
  80. Duc PM, Wada S, Kurata O, Hatai K (2010) In vitro and in vivo efficacy ofantifungal agents against Acremonium sp. Fish Pathol 45:109–114CrossRefGoogle Scholar
  81. Dupont J, Schwabe E (2016) First evidence of the deep-sea fungus Oceanitis scuticella Kohlmeyer (Halosphaeriaceae, Ascomycota) from the Northern Hemisphere. Bot Mar 59:275–282Google Scholar
  82. Dupont J, Magnin S, Rousseau F, Zbinden M et al (2009) Molecular and ultrastructural characterization of two ascomycetes found on sunken wood off Vanuatu Islands in the deep Pacific Ocean. Mycol Res 113:1351–1364CrossRefPubMedGoogle Scholar
  83. Ebel R (2012) Natural products from marine-derived fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. der Gruyter, Berlin, pp 411–440Google Scholar
  84. Edgcomb VP, Beaudoin D, Gast R, Biddle JF et al (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183CrossRefPubMedGoogle Scholar
  85. Elbrächter M, Schnepf E (1998) Parasites of harmful algae. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin, pp 351–363Google Scholar
  86. Fang W, Lin X, Zhou X, Wan J et al (2014) Cytotoxic and antiviral nitrobenzoyl sesquiterpenoids from the marine derived fungus Aspergillus ochraceus Jcma1F17. Med Chem Commun 5:701–705CrossRefGoogle Scholar
  87. Fazzani K, Jones EBG (1977) Spore release and dispersal in marine and brackish water fungi. Mater Org 12:235–248Google Scholar
  88. Fell JW (1967) Distribution of yeasts in the Indian Ocean. Bull Mar Sci 17:454–470Google Scholar
  89. Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 91–102Google Scholar
  90. Fell JW, Master IM, Wiegert RG (1984) Litter decomposition and nutrient enrichmen. In: The mangrove ecosystem: research methods, pp 239–251Google Scholar
  91. Fell JW, Statzell-Tallman S, Scorzetti G, Gutiérrez MH (2011) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. Antonie Van Leeuwenhoek 99:533–549CrossRefPubMedGoogle Scholar
  92. Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology, vol 1 pharmaceutical and bioactive natural products, vol 1. Plenum Press, New York, pp 419–459CrossRefGoogle Scholar
  93. Fenical W, Jensen PR, Cheng XC (1998) US Pat 6069146. https://patents.google.com/patent/US6069146A/en. Accessed Sept 2018
  94. Fisher WS, Nilson EH, Shleser RS (1975) Effect of fungus Haliphthoros milfordensis on the juvenile stages of the American lobster, Homarus americanus. J Invertebr Pathol 26:41–45CrossRefGoogle Scholar
  95. Flewelling AJ, Ellsworth KT, Sanford J, Forward E et al (2013) Macroalgal endobiotes from the Atlantic Coast of Canada: a potential source of antibiotic natural products? Microorganisms 1:175–187CrossRefPubMedPubMedCentralGoogle Scholar
  96. Fotedar R, Kolecka A, Boekhout T, Fell FW et al (2018a) Naganishia qatarensis sp. nov., a novel basidiomycetous yeast species from a hypersaline marine environment in Qatar. Int J Syst Evol Micobiol 68:2924–2929CrossRefGoogle Scholar
  97. Fotedar R, Kolecka A, Boekhout T, Fell JW et al (2018b) Fungal diversity of the hypersaline Inland Sea in Qatar. Bot Mar.  https://doi.org/10.1515/bot-2018-0048 CrossRefGoogle Scholar
  98. Freeman KR, Martin AP, Karki D, Lynch RC et al (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320CrossRefPubMedGoogle Scholar
  99. Frenken T, Alacid E, Berger SA, Bourne EC et al (2017) Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ Microbiol 19:3802–3822CrossRefPubMedGoogle Scholar
  100. Gachon MM, Sime-Ngando T, Strittmatter M, Chambouvet A et al (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640CrossRefPubMedGoogle Scholar
  101. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49CrossRefPubMedGoogle Scholar
  102. Gaertner A (1982) Lower marine fungi from the Northwest African upwelling areas and from the Atlantic off Portugal. Meteor Forsch Ergebn D 34:9–30Google Scholar
  103. Gao SS, Li XM, Williams K, Proksch P et al (2016a) Rhizovarins A-F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189. J Nat Prod 79:2066–2074CrossRefPubMedGoogle Scholar
  104. Gao XW, Liu HX, Sun ZH, Chen YC et al (2016b) Secondary metabolites from the deep-sea derived fungus Acaromyces ingoldii FS121. Molecules 21:371/1–371/7Google Scholar
  105. Garzoli L, Gnavi G, Tamma F, Tosi S et al (2015) Sink or swim: updated knowledge on marine fungi associated with wood substrates in the Mediterranean Sea and hints about their potential to remediate hydrocarbons. Prog Oceanogr 137:140–148CrossRefGoogle Scholar
  106. Garzoli L, Poli A, Prigione V, Gnavi G et al (2018) Peacock’s tail with a fungal cocktail: first assessment of the mycobiota associated with the brown alga Padina pavonica. Fung Ecol 35:87–97CrossRefGoogle Scholar
  107. Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507PubMedPubMedCentralGoogle Scholar
  108. Gingras M, Hagadorn JW, Seilacher A, Lalonde SV et al (2011) Possible evolution of mobile animals in association with microbial mats. Nat Geosci 4:372CrossRefGoogle Scholar
  109. Gleason FH, Küpper FC, Amon JP, Picard K et al (2011) Zoosporic fungi in marine ecosystems: a review. Mar Freshw Res 62:383–393CrossRefGoogle Scholar
  110. Gleason FH, Carney LT, Lilje O, Glockling ST (2012) Ecological potentials of species of Rozella (Cryptomycota). Fungal Ecol 5:651–656CrossRefGoogle Scholar
  111. Gleason FH, Gadd GM, Pitt JI, Larkum AWD (2017a) The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts. Mycology 8:205–215CrossRefPubMedPubMedCentralGoogle Scholar
  112. Gleason FH, Gadd GM, Pitt JI, Larkum AWD (2017b) The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology 8:216–227CrossRefPubMedPubMedCentralGoogle Scholar
  113. Gnavi G, Ercole E, Panno L, Vizzini A et al (2014) Dothideomycetes and Leotiomycetes sterile mycelia isolated from the Italian seagrass. Posidonia oceanica based on rDNA data. Springer Plus 3:508Google Scholar
  114. Gnavi G, Garzoli L, Poli A, Prigione V et al (2017) The culturable mycobiota of Flabellia petiolata: first survey of marine fungi associated to a Mediterranean green alga. Plos ONEGoogle Scholar
  115. Godinho VM, Furbino LE, Santiago IF, Pellizzari FM et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451CrossRefPubMedPubMedCentralGoogle Scholar
  116. Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235CrossRefPubMedGoogle Scholar
  117. Gueidan C, Thüs H, Pérez-Ortega S (2009) Phylogenetic position of the brown algae-associated lichenized fungus Verrucaria tavaresiae (Verrucariaceae). The Bryologist 114:563–569CrossRefGoogle Scholar
  118. Gueidan C, Ruibal C, De Hoog GS, Schneider H (2011) Rockinhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996CrossRefPubMedGoogle Scholar
  119. Guo X, Zhang Q, Zhang X, Zhang J et al (2015) Marine fungal communities in water and surface sediment of a sea cucumber farming system: habitat-differentiated distribution and nutrients driving succession. Fungal Ecol 14:87–98CrossRefGoogle Scholar
  120. Gutiérrez MH, Pantoja S, Tejos E, Quiñones RA (2011) The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol 158:205–219CrossRefGoogle Scholar
  121. Gutiérrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol 18:1646–1653CrossRefPubMedGoogle Scholar
  122. Haga A, Tamoto H, Ishino M, Kimura E (2013) Pyridone alkaloids from a marine-derived fungus, Stagonosporopsis cucurbitacearum, and their activities against azole-resistant Candida albicans. J Nat Prod 76:750–754CrossRefPubMedGoogle Scholar
  123. Han WB, Lu YH, Zhang AH, Zhang GF et al (2014) Curvulamine, a new antibacterial alkaloid incorporating two undescribed units from a Curvularia species. Org Lett 16:5366–5369CrossRefPubMedGoogle Scholar
  124. Hanic LA, Sekimoto S, Bates SS (2009) Oomycete and chytrid infections of the marine diatom Pseudo-nitzchia pungens (Bacillariophyceae) from Prince Edward Island. Can Bot 87:1096–1105CrossRefGoogle Scholar
  125. Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009CrossRefPubMedGoogle Scholar
  126. Hassett BT, Ducluzeaua ALL, Collins RE, Gradinger R (2017) Spatial distribution of aquatic marine fungi across the western Arctic and sub-Arctic. Environ Microbiol 19:475–484CrossRefPubMedGoogle Scholar
  127. Hassett BT, Vonnahme TR, Peng X, Jones EBG, Heuzé C (2019) Review of planktonic marine fungi, cultured and high-throughput sequencing diversity and ecology. Bot Mar (in press)Google Scholar
  128. Hatai K (2012) Diseases of fish and shellfish caused by marine fungi. In: Raghukumar C (ed) Biology of marine fungi. Springer, Germany, pp 15–52CrossRefGoogle Scholar
  129. Hatai K, Rosa D, Nakayama T (2000) Identification of lower fungi isolated from larvae of mangrove crab, Scylla serrata, in Indonesia. Mycoscience 41:565–572CrossRefGoogle Scholar
  130. Hattori T, Sakayaroj J, Jones EBG, Suetrong S et al (2014) Three species of Fulviformes (Basidiomycota, Hymenochaetales) associated with rots on mangrove tree Xylocarpus granatum in Thailand. Mycoscience 55:344–354CrossRefGoogle Scholar
  131. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  132. Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr.  https://doi.org/10.1128/microbiolspec.FUNK-0052-2016 CrossRefPubMedGoogle Scholar
  133. He F, Bao J, Zhang XY, Tu ZC et al (2013) Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J Nat Prod 76:1182–1186CrossRefPubMedGoogle Scholar
  134. Heckman DS, Geiser DM, Eidell BR, Stauffer RL et al (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133CrossRefPubMedGoogle Scholar
  135. Hibbett DS, Binder M, Bischoff JF, Blackwell M et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–554CrossRefPubMedGoogle Scholar
  136. Hibbett DS, Bauer R, Binder M, Giachini AJ et al (2014) 14 Agaricomycetes. In: Systematics and evolution. Springer, Berlin, pp. 373–429Google Scholar
  137. Hibbett D, Abarenkov K, Koljalg U, Opik M et al (2016) Sequence-based classification and identification of Fungi. Mycologia 108:1049–1068PubMedGoogle Scholar
  138. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD et al (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endobiotes from three major plant lineages. Mol Phylogenet Evol 42:543–555CrossRefPubMedGoogle Scholar
  139. Hirai J, Hamamoto Y, Honda D, Hidaka K (2018) Possible aplanochytrid (Labyrinthulea) prey detected using 18S metagenetic diet analysis in the key copepod species Calanus sinicus in the coastal waters of the subtropical western North Pacific. Plankton Benthos Res 13:75–82CrossRefGoogle Scholar
  140. Höhnk W (1952) Studien zur Brack-und Seewassermykologie 1. Veröff Inst Meeresforsch Bremerh 1:115–125Google Scholar
  141. Höhnk W (1955) Marine Pilze vom watt und meeresgrund (Chytridiales und Thraustochytriaceae). Natwissen 42:348–349CrossRefGoogle Scholar
  142. Höhnk W (1956) Studien zur Brack-und Seewassermykologie. VI. Uber die pilzliche Besiedlung verschieden salziger submerser Standorte. Veroeff Inst Meeresforsch Bremerhaven 4:195–213Google Scholar
  143. Höhnk W (1959) Ein Beitrag zur ozeanischen Mykologie. Dtsch Hydrogr Z Reihe B 3:81–87Google Scholar
  144. Höhnk W (1961) A further contribution to the oceanic mycology. Cons Inter Explor Mer 12:202–208Google Scholar
  145. Höller U, Wright AD, Matthée GF, Konig KM et al (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365CrossRefGoogle Scholar
  146. Hong JH, Jang S, Heo YM, Min M et al (2015) Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs 13:4137–4155CrossRefPubMedPubMedCentralGoogle Scholar
  147. Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC et al (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41CrossRefGoogle Scholar
  148. Hongsanan S, Jeewon R, Purahong W, Xie N et al (2018) Can we use environmental DNA as holotypes? Fungal Divers 92:1–30CrossRefGoogle Scholar
  149. Hug LA, Roger AJ (2007) The impact of fossils and taxon sampling on ancient molecular dating analyses. Mol Biol Evol 24:1889–1897CrossRefPubMedGoogle Scholar
  150. Hughes GC (1974) Geographical distribution of the higher mariner fungi. Veröff Inst Meerersforsch Bremerhaven, Suppl. 10(5):419–441Google Scholar
  151. Hughes GC (1986) Biogeography and the marine fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge Uni Press, Cambridge, pp 275–295Google Scholar
  152. Hughes GC, Chamut PS (1971) Lignicolous marine fungi from southern Chile, including a review of distribution in the southern hemisphere. Can J Bot 49:1–11CrossRefGoogle Scholar
  153. Huhndorf SM (1994) Neotropical ascomycetes. 5. Hypsostromataceae, a new family of Loculoascomycetes and Manglicola samuelsii, a new species from Guyana. Mycologia 86:266–269CrossRefGoogle Scholar
  154. Hyde KD (1986) Frequency of occurrence of lignicolous marine fungi in the tropics. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ Press, Cambridge, pp 311–322Google Scholar
  155. Hyde KD, Jones EBG (1988) Marine mangrove fungi. Mar Ecol 9:15–33CrossRefGoogle Scholar
  156. Hyde KD, Lee SY (1998) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118CrossRefGoogle Scholar
  157. Hyde KD, Jones EBG, Moss ST (1986) Mycelial adhesion to surfaces. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ. Press, Cambridge, pp 331–340Google Scholar
  158. Hyde KD, Jones EBG, Leaño E, Pointing SB et al (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161CrossRefGoogle Scholar
  159. Hyde KD, Jones EBG, Ariyawansa H, Liu JK et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313CrossRefGoogle Scholar
  160. Hyde KD, Maharachchikumbura SSN, Hongsanan S, Samarakoon MC et al (2017) The ranking of fungi—a tribute to David L. Hawksworth on his 70th birthday. Fungal Divers 84:1–23CrossRefGoogle Scholar
  161. Hyde KD, Chaiwan N, Norphanphoun C, Boonmee S et al (2018) Mycosphere notes 169–224. Mycosphere 9:271–430CrossRefGoogle Scholar
  162. Inderbitzin P, Lim SR, Volkmann-Kohlmeyer B, Kohlmeyer J et al (2004) The phylogenetic position of Spathulospora based on DNA sequences from dried herbarium material. Mycol Res 108:737–748CrossRefPubMedGoogle Scholar
  163. Inui T, Takeda Y, Iizuka H (1965) Taxonomical studies on genus Rhizopus. J Gen Appl Microbiol 11:1–121CrossRefGoogle Scholar
  164. Iqbal SH, Webster J (1973) Aquatic hyphomycete spora of the River Exe and its tributaries. Trans Br Mycol Soc 61:331–336CrossRefGoogle Scholar
  165. Ishida S, Nozaki D, Grossart HP, Kagami M (2015) Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Environ Microbiol Rep 7:435–441CrossRefPubMedGoogle Scholar
  166. Jaritkhuan S, Jones EBG, Bremer GB (1998) Thraustochytrids as a food source for aquaculture. In: Proc Intern Mycol Conference on Biodiversity and Biotechnology, pp 163–168Google Scholar
  167. James TY, Kauff F, Schoch C, Matheny PB et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822CrossRefPubMedGoogle Scholar
  168. James TY, Pelin A, Bonen L, Ahrendt S et al (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr Biol 23:1548–1553CrossRefPubMedGoogle Scholar
  169. Janson JE, Bernan VS, Greenstein M, Bugni TS et al (2005) Penicillium dravuni, a new marine derived species from an alga in Fiji. Mycologia 97:444–453CrossRefGoogle Scholar
  170. Jayasiri SC, Hyde KD, Abd-Elsalam KA, Abdel-Wahab MA et al (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Divers 74:3–18CrossRefGoogle Scholar
  171. Jayawardena RS, Purahong W, Zhang W, Wubet T et al (2018) Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers 90:1–84CrossRefGoogle Scholar
  172. Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412CrossRefPubMedGoogle Scholar
  173. Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7:1669–1677CrossRefGoogle Scholar
  174. Ji NY, Wang BG (2016) Mycochemistry of marine algicolous fungi. Fungal Divers 80:301–342CrossRefGoogle Scholar
  175. Johnson TW, Sparrow FK (1961) Fungi in oceans and estuaries. Cramer, WeinheimGoogle Scholar
  176. Johnson RG, Jones EBG, Moss ST (1984) Taxonomic studies of the Halosphaeriaceae: Remispora Linder, Marinospora Cavaliere and Carbosphaerella Schmidt. Bot Mar 27:557–566CrossRefGoogle Scholar
  177. Johnson RG, Jones EBG, Moss ST (1987) Taxonomic studies of the Halosphaeriaceae: Ceriosporopsis, Haligena and Appendichordella gen. nov. Can J Bot 65:931–942CrossRefGoogle Scholar
  178. Jones EBG (1982) Decomposition by basidiomycetes in aquatic environments. In: Frankland JC, Hedger JN, Swift MJ (eds) Decomposer Basidiomycetes their biology and ecology. Cambridge Univ Press, Cambridge, pp 192–212Google Scholar
  179. Jones EBG (1988) Do fungi occur in the sea? The Mycologist 2:150–157CrossRefGoogle Scholar
  180. Jones EBG (1994) Fungal adhesion. Presidential address 1992. Mycol Res 98:961–981CrossRefGoogle Scholar
  181. Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73:S790–S801CrossRefGoogle Scholar
  182. Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73Google Scholar
  183. Jones EBG (2011a) Fifty years of marine mycology. Fungal Divers 50:73–112CrossRefGoogle Scholar
  184. Jones EBG (2011b) Are there more marine fungi to be described? Bot Mar 54:343–354CrossRefGoogle Scholar
  185. Jones EBG, Abdel-Wahab MA (2005) Marine fungi from the Bahamas Islands. Bot Mar 48:356–364CrossRefGoogle Scholar
  186. Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Elsevier, London, pp 301–324CrossRefGoogle Scholar
  187. Jones EBG, Le Campion-Alsumard T (1970) Marine fungi on polyurethane covered plates submerged in the sea. Nova Hedwig 19:567–582Google Scholar
  188. Jones EBG, Fell JW (2012) Basidiomycota. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 49–63CrossRefGoogle Scholar
  189. Jones EBG, Mitchell JL (1996) Biodiversity of marine fungi. In: Cimerman A, Gunde-Cimerman N (eds) Biodiversity: international biodiversity seminar. National Institute of Chemistry and Slovenia National Commission for UNESCO, Ljubljana, Slovenia, pp 31–42Google Scholar
  190. Jones EBG, Pang KL (2012) Tropical aquatic fungi. Biodivers Cons 21:2403–2423CrossRefGoogle Scholar
  191. Jones EBG, Johnson RG, Moss ST (1983a) Taxonomic studies of the Halosphaeriaceae: Corollospora Werdermann. Bot J Linn Soc 87:193–212CrossRefGoogle Scholar
  192. Jones EBG, Johnson RG, Moss ST (1983b) Ocostaspora apilongissima gen. et sp. nov: a new marine Pyrenomycete from wood. Bot Mar 24:353–360Google Scholar
  193. Jones EBG, Vrijmoed LLP, Read SJ, Moss ST (1994) Tirispora, a new genus in the Halosphaeriales. Can J Bot 72:1373–1378CrossRefGoogle Scholar
  194. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S et al (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187Google Scholar
  195. Jones EBG, Puglisi MP (2006) Marine fungi from Florida. Florida Sci 69:157–164Google Scholar
  196. Jones MDM, Forn I, Gadelha C, Egan MJ et al (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203CrossRefPubMedGoogle Scholar
  197. Jones EBG, Pang KL, Stanley SJ (2012) Fungi from marine algae. In: Jones EGB, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 329–344CrossRefGoogle Scholar
  198. Jones EBG, Alias SA, Pang KL (2013a) Distribution of marine fungi and fungus-like organisms in the South China Sea and their potential use in industry and pharmaceutical application. Malaysian J Sci 32(SCS Sp Issue):119–130Google Scholar
  199. Jones EBG, Sueterong S, Cheng WH, Rungjindamai N et al (2014) An additional fungal lineage in the Hypocreomycetidae (Falcocladium species) and the taxonomic re-evaluation of Chaetosphaeria chaetosa and Swampomyces species, based on morphology, ecology and phylogeny. Cryptog Mycol 35:119–138CrossRefGoogle Scholar
  200. Jones EBG, Suetrong S, Bahkali AH, Abdel-Wahab MA et al (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72CrossRefGoogle Scholar
  201. Jones EBG, Ju WT, Lu CL, Guo SY, Pang KL (2017) The Halosphaeriaceae revisted. Bot Mar 60:453–468CrossRefGoogle Scholar
  202. Jones MC, Dye SR, Fernandes JA, Frölicher TL et al (2013b) Predicting the impact of climate change on threatened species in UK waters. PLoS ONE 8:e54216CrossRefPubMedPubMedCentralGoogle Scholar
  203. Jones MDM, Richards TA (2011) Environmental DNA analysis and the expansion of the fungal tree of life. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms, The Mycota XIV. Springer, BerlinGoogle Scholar
  204. Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129CrossRefGoogle Scholar
  205. Karling JS (1977) Inconographicum iconarum, 2nd edn. Cramer, VaduzGoogle Scholar
  206. Karpov SA, Letcher PM, Mamkaeva MA, Mamkaeva KA (2010) Phylogenetic position of the genus Mesochytrium (Chytridiomycota) based on zoospore ultrastructure and sequences from the 18S and 28S rRNA gene. Nova Hedwig 90:81–94CrossRefGoogle Scholar
  207. Karpov SA, Kobseva AA, Mamkaeva MA, Mamkaeva KA et al (2014) Gromochytrium mamkaevae gen. & sp. nov. and two new orders: Gromochytriales and Mesochytriales (Chytridiomycetes). Persoonia 32:115–126CrossRefPubMedPubMedCentralGoogle Scholar
  208. Kendrick B, Risk MJ, Michaelides J, Bergman K (1982) Amphibious microborers, bioeroding fungi isolated from live corals. Bull Mar Sci 32:862–867Google Scholar
  209. Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S et al (2014) An antibacterial cytochalasin derivative from the marine-derived fungus Diaporthaceae sp. PSU-SP2/4. Phytochem Lett 10:5–9CrossRefGoogle Scholar
  210. Kirichuk NN, Pivkin MV (2015) Filamentous fungi associated with the seagrass Zostera marina Linnaeus, 1753 of Rifovaya Bay (Peter the Great Bay, the Sea of Japan). Russ J Mar Biol 41:351–355CrossRefGoogle Scholar
  211. Kirk P, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CAB International, Wallingford, UKCrossRefGoogle Scholar
  212. Kis-Papo T (2005) Marine fungal communities. In: Dighton J, Wjits JF, Oudemans P (eds) The fungal community, its organisation and role in the ecosystem, 3rd edn. CRC Press, Boca Baton, pp 61–92CrossRefGoogle Scholar
  213. Kitancharoen N, Nakamura K, Wada S, Hatai K (1994) Atkinsiella awabi sp. nov. isolated from stocked abalone, Haliotis sieboldii. Mycoscience 35:265–270CrossRefGoogle Scholar
  214. Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:1753–1769CrossRefGoogle Scholar
  215. Koch J, Jones EBG (1989) The identity of Crinigera maritima and three new genera of marine cleistothecial ascomycetes. Can J Bot 67:1183–1197CrossRefGoogle Scholar
  216. Koch V, Wolff M (2002) Energy budget and ecological role of mangrove epibenthos in the Caeté estuary, North Brazil. Mar Ecol Prog Ser 228:119–130CrossRefGoogle Scholar
  217. Kohlmeyer J (1963a) Parasitische und epiphytische Pilze auf Meeresalgen. Nova Hedwig 6:127–146Google Scholar
  218. Kohlmeyer J (1963b) Fungi marini novi vel critici. Nova Hedw 6:297–329Google Scholar
  219. Kohlmeyer J (1966) Ecological observations on arenicolous marine fungi. Z Allg Mikrobiol 6:94–105CrossRefGoogle Scholar
  220. Kohlmeyer J (1968a) Marine fungi from the tropics. Mycologia 60:252–270CrossRefGoogle Scholar
  221. Kohlmeyer J (1968b) The first Ascomycete from the deep sea. J Elisha Mitchell Sci Soc 84:239–241Google Scholar
  222. Kohlmeyer J (1969a) Deterioration of wood by marine fungi in the deep sea. In: Materials performance and the deep sea. Am Soc Test Mater, Spec Tech Publ, vol 445, pp 20–29Google Scholar
  223. Kohlmeyer J (1969b) Marine fungi of Hawaii including the new genus Helicascus. Can J Bot 47:1460–15487CrossRefGoogle Scholar
  224. Kohlmeyer J (1969c) The role of marine fungi in the penetration of calcareous substances. Am Zool 9:741–746CrossRefGoogle Scholar
  225. Kohlmeyer J (1970) Ein neuer Ascomycet auf Hydrozoen im Sudatlantik. Ber Dtsch Bot Ges 83:505–509Google Scholar
  226. Kohlmeyer J (1973a) Spathulosporales, a new order and possible missing link between Laboulbeniales and Pyrenomycetes. Mycologica 65:614–647CrossRefGoogle Scholar
  227. Kohlmeyer J (1973b) Fungi from marine algae. Bot Mar 16:201–215CrossRefGoogle Scholar
  228. Kohlmeyer J (1975) Revision of algicolous Zigonella spp. and description of Pontogenia gen. nov. (Ascomycetes). Bio Sci 25:86–93Google Scholar
  229. Kohlmeyer J (1977) New genera and species of higher fungi from the deep sea (1615–5315 m). Rev Mycol 41:189–206Google Scholar
  230. Kohlmeyer J (1986) Taxonomic studies of the marine Ascomycotina. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 99–210Google Scholar
  231. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic Press, New YorkGoogle Scholar
  232. Kohlmeyer J, Volkmann-Kohlmeyer B (1989) Hawaiian marine fungi, including two new genera of Ascomycotina. Mycol Res 92:410–421CrossRefGoogle Scholar
  233. Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous marine fungi. Bot Mar 34:1–61CrossRefGoogle Scholar
  234. Kohlmeyer J, Volkmann-Kohlmeyer B (2001a) Fungi on Juncus roemerianus: new coelomycetes with notes on Dwayaangam junci. Mycol Res 105:500–505CrossRefGoogle Scholar
  235. Kohlmeyer J, Volkmann-Kohlmeyer B (2001b) Fungi on Juncus roemerianus. 16. More new coelomycetes, including Tetranacriella, gen. nov. Bot Mar 44:147–156CrossRefGoogle Scholar
  236. Kohlmeyer J, Volkmann-Kohlmeyer B (2001c) The biodiversityof fungi on Juncus roemerianus. Mycol Res News 105:1411–1412CrossRefGoogle Scholar
  237. Kohlmeyer J, Volkmann-Kohlmeyer B (2002) Fungi on Juncus and Spartina: new marine species of Anthostomella, with a list of marine fungi known on Spartina. Mycol Res 106:365–374CrossRefGoogle Scholar
  238. Kohlmeyer J, Volkmannn-Kohlmeyer B (2003) Marine Ascomycetes from algae and animals’ hosts. Bot Mar 46:285–306CrossRefGoogle Scholar
  239. Kohlmeyer J, Bebout B, Volkmann-Kohlmeyer B (1995) Decomposition of mangrove wood by marine fungi and Teredinids in Belize. PSZNI Mar Ecol 16:27–39CrossRefGoogle Scholar
  240. Kohlmeyer J, Spatafora JA, Volkmann-Kohlmeyer B (2000) Lulworthiales, a new order of marine Ascomycota. Mycologia 92:453–458CrossRefGoogle Scholar
  241. Küpper FC, Müller DG (1999) Massive occurrence of the heterokont and fungal parasites Anisolpidium, Eurychasma and Chytridium in Pylaiella littoralis (Ectocarpales, Phaeophyceae). Nova Hedwig 69:381Google Scholar
  242. Küpper FC, Maier I, Müller DG, Loiseaux-de Goer S et al (2006) Phylogenetic affinities of two eukaryotic pathogens of marine macroalgae, Eurychasma dicksonii (Wright) Magnus and Chytridium polysiphoniae Cohn. Cryptog Algol 27:165–184Google Scholar
  243. Kurtzman CP, Ribnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371CrossRefGoogle Scholar
  244. Lara E, Moreira D, Lo´pez-Garcia P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of Fungi. Protist 161:116–121CrossRefPubMedGoogle Scholar
  245. Le Calvez T, Burgaud G, Mahe S, Barbier G et al (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421CrossRefPubMedPubMedCentralGoogle Scholar
  246. Le Campion-Alsumard T, Golubic T, Priess K (1995) Fungi in corals symbiosis or disease? Interaction between polyps and fungi causes pearl-like skeleton biominerilazation. Mar Ecol Prog Ser 117:137–147CrossRefGoogle Scholar
  247. Lee SY, Jones EBG, Diele K, Castellanos-Galindo GA et al (2017) Biodiversity. In: Rivera-Monry V, Lee SY, Kristensen E, Twilley RR (eds) Mangrove ecosystems: a global biogeographic perspective. Springer, New York, pp 55–84CrossRefGoogle Scholar
  248. Lepelletier F, Karpov SA, Alacid E, Le Panse S et al (2014) Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165:230–244CrossRefPubMedGoogle Scholar
  249. Letcher PM, Vélez CG, Barrantes ME, Powell MJ et al (2008) Ultrastructural and molecular analyses of Rhizophydiales (Chytridiomycota) isolates from North America and Argentina. Mycol Res 112:759–782CrossRefPubMedGoogle Scholar
  250. Letcher PM, Powell MJ, Davis WJ (2015) A new family and four new genera in Rhizophydiales (Chytridiomycota). Mycologia 107:808–830CrossRefPubMedGoogle Scholar
  251. Li CW, Xia MW, Cui CB, Peng JX et al (2016) A novel oxaphenalenone, penicimutalidine: activated production of oxaphenalenones by the diethyl sulphate mutagenesis of marine-derived fungus Penicillium purpurogenum G59. RSC Adv 6:82277–82281CrossRefGoogle Scholar
  252. Li DH, Cai SX, Tian L, Lin ZJ et al (2007a) Two new metabolites with cytotoxicities from deep-sea fungus, Aspergillus sydowii YHll-2. Arch Pharm Res 30:1051–1054CrossRefPubMedGoogle Scholar
  253. Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microb Res 164:233–241CrossRefGoogle Scholar
  254. Li WC, Zhou J, Guo SY, Guo LD (2007b) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80Google Scholar
  255. Liew ECY, Aptroot A, Hyde KD (2000) Phylogenetic significance of the pseudoparaphyses in Loculoascomycete taxonomy. Mol Phylogenetics Evol 20:1–13Google Scholar
  256. Liu XZ, Wang QM, Theelen B, Groenewald M et al (2015a) Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 81:1–26CrossRefPubMedPubMedCentralGoogle Scholar
  257. Liu XZ, Wang QM, Göker M, Groenewald M et al (2015b) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147CrossRefPubMedGoogle Scholar
  258. Liu Y, Li XM, Meng LH, Jiang WL et al (2015c) Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marine-derived fungus Penicillium adametzioides AS-53 on different culture media. J Nat Prod 78:1294–1299CrossRefPubMedGoogle Scholar
  259. Liu Y, Mandi A, Li XM, Meng LH et al (2015d) Peniciadametizine A, a dithiodiketopiperazine with a unique spiro[furan-2,7′-pyrazino[1,2-b][1,2]oxazine] skeleton, and a related analogue, peniciadametizine B, from the marine sponge-derived fungus Penicillium adametzioides. Mar Drugs 13:3640–3652CrossRefPubMedPubMedCentralGoogle Scholar
  260. Liu S, Dai H, Makhloufi G, Heering C et al (2016) Cytotoxic 14-membered macrolides from a mangrove-derived endophytic fungus Pestalotiopsis microspore. J Nat Prod 79:2332–2340CrossRefPubMedGoogle Scholar
  261. Liu Y, Singh P, Liang Y, Li J et al (2017a) Abundance and molecular diversity of thraustochytrids in coastal waters of southern China. FEMS Microbiol Ecol 5:89.  https://doi.org/10.1093/femsec/fix070 CrossRefGoogle Scholar
  262. Liu JK, Hyde KD, Jeewon R, Phillips AJL et al (2017b) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 84:75–99CrossRefGoogle Scholar
  263. Loilong A, Salayaroj J, Ringjindamain Choeyklin R et al (2012) Biodiversity of fungi on the palm Nypa fruticans. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 273–290Google Scholar
  264. Loque CP, Medeiros AO, Pellizzari FM, Olivera EC et al (2010) Fungal community associated with marine macro algae from Antarctica. Polar Biol 33:641–648CrossRefGoogle Scholar
  265. Lücking R, Huhndorf S, Pfister DH, Plata ER et al (2009) Fungi evolved right on track. Mycologia 101:810–822CrossRefPubMedGoogle Scholar
  266. Lutley M, Wilson IM (1972) Development and fine structure of ascospores in the marine fungus Ceriosporopsis halima. Trans Br Mycol Soc 58:393–402CrossRefGoogle Scholar
  267. Ma X, Li L, Zhu T, Ba M et al (2013) Phenylspirodrimanes with anti-HIV activity from the sponge-derived fungus Stachybotrys chartarum MXH-X73. J Nat Prod 76:2298–2306CrossRefPubMedGoogle Scholar
  268. Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers 72:199–301CrossRefGoogle Scholar
  269. Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al (2016) Families of Sordariomycetes. Fungal Divers 79:1–317CrossRefGoogle Scholar
  270. Mantle PG, Hawksworth DL, Pazoutova S, Collinson LM et al (2006) Amorosia littoralis gen. sp. nov., a new genus and species name for the scorpinone and caffeine-producing hyphomycetes from the littoral zone in The Bahamas. Mycol Res 110:371–1378CrossRefGoogle Scholar
  271. Marano AV, Pires-Zottarelli CLA, de Souza JI, Glockling SL, Leano EM, Gachon CMM, Strittmatter M, Gleason FH (2012) Hyphochytriomycota, oomycota and perkinsozoa (Supergroup Chromalveolata). In: Jones EBG, Pang K-L (eds) Marine mycology-marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 167–213Google Scholar
  272. Marcel J, Pascale D, Andersen JH, Reyes F et al (2016) The marine biodiscovery pipeline and ocean medicines of tomorrow. J Mar Biol Assoc UK 96:151–158CrossRefGoogle Scholar
  273. Massana R, Gobet A, Audic S, Bass D et al (2015) Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol 17:4035–40490CrossRefPubMedGoogle Scholar
  274. Mata JL, Cebrián J (2013) Fungal endobiotes of the seagrasses Halodule wrightii and Thalassia testudinum in the north-central Gulf of Mexico. Bot Mar 56:541–545CrossRefGoogle Scholar
  275. McMillan RT Jr (1984) Effective fungicides for the control of Cercospora spot on Rhizophora mangle. Int J Plant Pathol 2(2):85–88Google Scholar
  276. McNeill J, Barrie FR, Buck WR, Demoulin V et al (2012) International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Publ. 2012. Regnum Fungal Diversity 123 Vegetabile 154. Koeltz Scientific Books. ISBN 978-3-87429-425-6Google Scholar
  277. Meng LH, Li XM, Liu Y, Wang BG (2014) Penicibilaenes A and B, sesquiterpenes with a tricyclo[6.3.1.0(1,5)]dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267. Org Lett 16:6052–6055CrossRefPubMedGoogle Scholar
  278. Meng LH, Li XM, Liu Y, Wang BG (2015) Polyoxygenated dihydropyrano [2,3-c]pyrrole-4,5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity. Chin Chem Lett 26:610–612CrossRefGoogle Scholar
  279. Meng LH, Wang CY, Mandi A, Li XM et al (2016) Three diketopiperazine alkaloids with spirocyclic skeletons and one bisthiodiketopiperazine derivative from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Org Lett 18:5304–5307CrossRefPubMedGoogle Scholar
  280. Meyers SP (1996) Fifty years of marine mycology: highlights of the past, projections for the coming century. SIMS News 46:119–127Google Scholar
  281. Meyers SP, Moore RT (1960) Thalassiomycetes II. New genera and species of Deuteromycetes. Am J Bot 47:345–349CrossRefGoogle Scholar
  282. Meyers SP, Reynolds ES (1958) A wood incubation method for the study of lignicolous marine fungi. Bull Mar Sci Gulf Caribbean 8:342–347Google Scholar
  283. Meyers SP, Reynolds ES (1960) Occurrence of lignicolous fungi in northern Atlantic and Pacific marine localities. Can J Bot 38:217–226CrossRefGoogle Scholar
  284. Meyers SP, Ahearn DG, Grunkel W, Roth FJ (1967) Yeasts from the North Sea. Mar Biol 1:118–123CrossRefGoogle Scholar
  285. Minic Z (2009) Organisms of deep sea hydrothermal vents as a source for studying adaptation and evolution. Symbiosis 47:121–132CrossRefGoogle Scholar
  286. Mohamed DJ, Martiny JBH (2011) Patterns of fungal diversity and composition along a salinity gradient. ISME J 5:379–388CrossRefPubMedGoogle Scholar
  287. Montagne JFC (1856) Sylloge Generum Specierumque Cryptogamarum. Bailliere et Fils, ParisGoogle Scholar
  288. Moore RT, Meyers SP (1959) Thalassiomycetes I. Principles of delimitation of the marine mycota with a description of a new aquatically adapted Deuteromycete. Mycologia 51:871–876Google Scholar
  289. Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121Google Scholar
  290. Moustafa AF (1975) Osmophilous fungi in the salt marshes of Kuwait. Can J Microbiol 21:1573–1580CrossRefPubMedGoogle Scholar
  291. Mouzouras R (1986) Pattern of timber decay caused by marine fungi. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 341–353Google Scholar
  292. Naff CS, Darcy JL, Schmidt SK (2013) Phylogeny and biogeography of an uncultured clade of snow chytrids. Environ Microbiol 15:2672–2680PubMedGoogle Scholar
  293. Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 173–187CrossRefGoogle Scholar
  294. Nagahama T, Hamamoto M, Hor K (2006) Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west Pacific Ocean. Int J Syst Evol Microbiol 56:295–299CrossRefPubMedGoogle Scholar
  295. Nagahama T, Abdel-Wahab MA, Nogi Y, Miyazaki M et al (2008) Dipodascus tetrasporeus sp. nov., an ascosporogenous yeast isolated from deep-sea sediments in the Japan Trench. Int J Syst Evol Microbiol 58:1040–1046CrossRefPubMedGoogle Scholar
  296. Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA et al (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370CrossRefPubMedGoogle Scholar
  297. Nagai K, Kamigiri K, Matsumoto H, Kawano Y et al (2002) YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J Antibiot 55:1036–1041CrossRefPubMedGoogle Scholar
  298. Nagano Y, Nagahama T, Hatada Y, Nunoura T et al (2010) Fungal diversity in deep-sea sedimentsdthe presence of novel fungal groups. Fungal Ecol 3:316–325CrossRefGoogle Scholar
  299. Nakagiri A (1989) Marine fungi in sea foam from Japanese coast. IFO Res Commun 14:52–79Google Scholar
  300. Nakagiri A, Ito T (1991) Basidiocarp development of the cyphelloid gasteroid aquatic basidiomycetes Halocyphina villosa and Limnoperdon incarnatum. Can J Bot 69:2320–2327CrossRefGoogle Scholar
  301. Nakagiri A, Ito T (1997) Retrostium amphiroae gen. et sp. nov. inhabiting a marine red alga, Amphiroa zonata. Mycologia 89:484–493CrossRefGoogle Scholar
  302. Nakagiri A, Okane I, Ito T (1998) Zoosporangium development, zoospore release and culture properties of Halophytophthora mycoparasitica. Mycoscience 3:223–230CrossRefGoogle Scholar
  303. Newell SY (2001) Fungal biomass and productivity. In: Methods in microbiology, vol 3. Academic Press, pp 357–372Google Scholar
  304. Newell SY, Bärlocher F (1993) Removal of fungal and total organic matter from decaying cordgrass leaves by shredder snails. J Exp Mar Biol Ecol 171:39–49CrossRefGoogle Scholar
  305. Newell SY, Fell JW (1992) Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Can J Microbiol 38:979–982CrossRefGoogle Scholar
  306. Newell SY, Porter D (2000) Microbial secondary production from saltmarsh-grass shoots, and its known and potential fates. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer, Amsterdam, pp 159–185Google Scholar
  307. Newell SY, Porter D, Lingle WL (1996) Lignocellulolysis by ascomycetes (Fungi) of a saltmarsh grass (smooth cordgrass). Microsc Res Tech 33:32–46CrossRefPubMedGoogle Scholar
  308. Nicot J (1958) Une moisissure arénicole du littoral atlantique: Dendryphiella arenaria sp.nov. Rev Mycol 23:87–99Google Scholar
  309. Nilsson S (1957) A new Danish fungus, Dinemasporium marinum. Bot Not 110:321–324Google Scholar
  310. Niu S, Si L, Liu D, Zhou A et al (2016) Spiromastilactones: a new class of influenza virus inhibitors from deep-sea fungus. Eur J Med Chem 108:229–244CrossRefPubMedGoogle Scholar
  311. Norphanphoun C, Raspé O, Jeewon R, Wen TC et al (2018) Morphological and phylogenetic characterisation of novel Cytospora species associated with mangroves. MycoKeys 38:93–120CrossRefGoogle Scholar
  312. Oberwinkler F (2012) Evolutionary trends in Basidiomycota. Stapfia 96:45–104Google Scholar
  313. Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N (2016) Marine protists: diversity and dynamics. Springer, Tokyo. ISBN 978-4-431-55129-4Google Scholar
  314. Orsi W, Biddl JF, Edgcomb V (2013) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS ONE 8:e56335CrossRefPubMedPubMedCentralGoogle Scholar
  315. O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M et al (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550CrossRefPubMedPubMedCentralGoogle Scholar
  316. O’Rorke R, Lavery SD, Wang M, Nodder SD et al (2013) Determining the diet of larvae of the red rock lobster (Jasus edwardsii) using high-throughput DNA sequencing techniques. Mar Biol 161:551–563CrossRefGoogle Scholar
  317. Overy DP, Rämä T, Oosterhuis R, Walker AK, Pang KL (2019) The neglected marine fungi, sensu stricto, and their isolation for natural products’ discovery. Mar Drugs 17(1):42–62.  https://doi.org/10.3390/md17010042 CrossRefPubMedCentralGoogle Scholar
  318. Panebianco C (1994) Temperature requirements of selected marine fungi. Bot Mar 37:157–161CrossRefGoogle Scholar
  319. Panebianco C, Tam WT, Jones EBG (2002) The effect of pre-inoculation of balsa wood by selected marine fungi and their effect on subsequent colonization in the sea. Fungal Divers 10:77–88Google Scholar
  320. Pang KL (2012) Phylogeny of the marine Sordariomycetes. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 35–47Google Scholar
  321. Pang KL, Jones EBG (2012) Epilogue: importance and impact of marine mycology and fungal-like organisms: challenges for the future. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 509–517Google Scholar
  322. Pang KL, Jones EBG (2017) Recent advances in marine mycology. Bot Mar 60:361–362CrossRefGoogle Scholar
  323. Pang KL, Abdel-Wahab MA, Sivichai S, El-Sharouney HM et al (2002) Jahnulales (Dothideomycetes, Ascomycota): a new order of lignicolous freshwater ascomycetes. Mycol Res 106:1031–1042CrossRefGoogle Scholar
  324. Pang KL, Vrijmoed LLP, Kong RYC, Jones EBG (2003) Polyphyly of Halosarpheia (Halosphaeriales, Ascomycota): implications on the use of unfurling ascospore appendages as a systematic character. Nova Hedwig 77:1–18CrossRefGoogle Scholar
  325. Pang KL, Vrijmoed LLP, Goh TK, Plaingame N et al (2008) Fungal endobiotes associated with Kandelia candel (Rhizophoraceae) in Mai Po Nature Reserve, Hong Kong. Bot Mar 51:171–178CrossRefGoogle Scholar
  326. Pang KL, Jheng JS, Jones EBG (2011) Marine mangrove fungi of Taiwan. National Taiwan Ocean Univ, Chilung, pp 1–131Google Scholar
  327. Pang KL, Hyde KD, Alias SA, Suetrong S et al (2013) Dyfrolomycesillaceae, a new family in the Dothideomycetes, Ascomycota. Cryptog Mycol 34:223–232CrossRefGoogle Scholar
  328. Pang KL, Tsui CKM, Jones EBG, Vrijmoed LLP (2016a) Bioprospecting fungi and the Labyrinthulomyces and the Ocean-Land Interface. In: Baker BJ (ed) Marine Biomedicine, from beach to bedside. CRC Press, New York, pp 379–391Google Scholar
  329. Pang KL, Overy DP, Jones EBG, da Luz Calado M et al (2016b) Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30:163–175CrossRefGoogle Scholar
  330. Panno L, Bruno B, Voyron S, Anastasi A et al (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol 30:685–694CrossRefGoogle Scholar
  331. Panzer K, Yilmaz P, Weiß M, Reich L et al (2015) Identification of habitat-specific biomes of aquatic fungal communities using a comprehensive nearly full-length 18S rRNA dataset enriched with contextual data. PLoS ONE 10:e0134377CrossRefPubMedPubMedCentralGoogle Scholar
  332. Pérez-Ortega S, Spribille T, Palice Z, Elix JA et al (2010) A molecular phylogeny of the Lecanora varia group, including a new species from western North America. Mycol Prog 9:523–535CrossRefGoogle Scholar
  333. Pérez-Ortega S, Garrido-Benavent I, Grube M, Olmo R et al (2016) Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Divers 80:285–300CrossRefGoogle Scholar
  334. Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Divers 75:1–25CrossRefGoogle Scholar
  335. Petersen KRL, Koch J (1997) Substrate preference and vertical zonation of lignicolous marine fungi on mooring posts of oak (Quercus sp.) and larch (Larix sp.) in Svanemøllen Harbour. Bot Mar 40:451–463CrossRefGoogle Scholar
  336. Picard KT (2017) Coastal marine habitats harbour novel early diverging fungal diversity. Fungal Ecol. 25:1–13CrossRefGoogle Scholar
  337. Pinruan U, Jones EBG, Hyde KD (2002) Aquatic fungi from peat swamp palms: Jahnula appendiculata sp. nov. Sydowia 54:242–247Google Scholar
  338. Pinruan U, Hyde KD, Lumyong S, McKenzie EHC et al (2007) Occurrence of fungi on tissues of the peat swamp palm Licuala longicalycata. Fungal Divers 25:157–173Google Scholar
  339. Pivikin MV, Afiyatullov SS, Elyakov GB (1999) Biodiversity of marine fungi and new biological active substances from them. In: Chou CH, Walker GR, Reinhardt C (eds) From organisms to ecosystems in the Pacific. Biodivers Alleopathy, pp 91–99Google Scholar
  340. Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 41:293–298CrossRefGoogle Scholar
  341. Pointing SB, Buswell JA, Jones EBG, Vrijmoed LLP (1999) Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol Res 103:690–700CrossRefGoogle Scholar
  342. Poli A, Vizzini A, Prigione V, Varese GC (2018) Basidiomycota isolated from the Mediterranean Sea—phylogeny and putative ecological roles. Fungal Ecol 36:51–62CrossRefGoogle Scholar
  343. Porter D, Farnham WF (1986) Mycaureola edulis, a marine basidiomycete parasite of the red alga, Dilsea carnosa. Trans Br Mycol Soc 87:575–582CrossRefGoogle Scholar
  344. Porter D, Lingle WL (1992) Endolithic thraustochytrid marine fungi from planted shell fragments. Mycologia 84:289–299CrossRefGoogle Scholar
  345. Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8:e65576CrossRefPubMedPubMedCentralGoogle Scholar
  346. Pruksakorn P, Arai M, Kotoku N, Vilchèze C et al (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663CrossRefPubMedGoogle Scholar
  347. Pugh GJF (1962) Studies on fungi in coastal soils. II. Fungal ecology in a developing salt marsh. Trans Br Mycol Soc 45:560–566CrossRefGoogle Scholar
  348. Pugh GJF, Jones EBG (1986) Antarctic marine fungi: a preliminary account. In: Moss ST (ed) The biology of marine fungi. Cambridge Univ. Press, Cambridge, pp 323–330Google Scholar
  349. Raghukumar C (1987) Fungal parasites of marine algae from Mandapam (South India). Dis Aquat Organ 3:137–145CrossRefGoogle Scholar
  350. Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35Google Scholar
  351. Raghukumar S (2017) Fungi in coastal and oceanic marine ecosystems. Springer, New YorkCrossRefGoogle Scholar
  352. Raghukumar C, Damare SR (2008) Deep-sea fungi. In: Michiels C, Bartlett DH, Aertsen A (eds) High-pressure microbiology. ASM Press, Washington, DC, USA, pp 265–292CrossRefGoogle Scholar
  353. Raghukumar C, Damare S, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptions. Bot Mar 53:479–492CrossRefGoogle Scholar
  354. Rama T, Norden J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H (2014) Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol 8:46–58CrossRefGoogle Scholar
  355. Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344CrossRefPubMedGoogle Scholar
  356. Réblová M, Miller AN, Rossman AY, Seifert KA et al (2016) Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 7:131–153CrossRefPubMedPubMedCentralGoogle Scholar
  357. Reed M (1902) Two new ascomycetous fungi parasitic on marine algae. Univ Cal Publ Bot 1:141–164Google Scholar
  358. Remy W, Taylor TN, Hass H (1994) Early Devonian fungi: a blastocladalean fungus with sexual reproduction. Am J Bot 81:690–702CrossRefGoogle Scholar
  359. Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycosshiza from early Debonian. Myhcologia 87(4):561–573Google Scholar
  360. Richards TA, Jones MD, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522CrossRefGoogle Scholar
  361. Richards TA, Leonard G, Mah F, del Campo J et al (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282:2015–2243CrossRefGoogle Scholar
  362. Roth FJ, Orpurt PA, Ahearn DG (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42:375–383CrossRefGoogle Scholar
  363. Ruff SE, Arnds J, Knittel K, Amann R et al (2013) Microbial communities of deep-sea methane seeps at Hikurangi Continental Margin (New Zealand). PLoS ONE 8:e72627CrossRefPubMedPubMedCentralGoogle Scholar
  364. Sachs J (1874) Lehrbuch der Botanik, 4th edn. Engelman, LeipzigGoogle Scholar
  365. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endobiotes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  366. Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45CrossRefGoogle Scholar
  367. Sakayaroj J, Pang KL, Jones EBG (2011) Multi-gene phylogeny of the Halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Divers 46:87–109CrossRefGoogle Scholar
  368. Sakayaroj J, Preedanon S, Suetrong S, Klaysuban A et al (2012) Molecular characterization of basidiomycetes associated with the decayed mangrove tree Xylocarpus granatum in Thailand. Fungal Divers 56:145–156CrossRefGoogle Scholar
  369. Samarakoon MC, Hyde KD, Promputtha I, Hongsanan S et al (2016) Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere 7:1746–1761CrossRefGoogle Scholar
  370. Samarakoon MC et al (2019) An updated fossil calibrations and ancient lineages of Ascomycota towards the divergence time estimations (in press)Google Scholar
  371. Sánchez Márquez S, Bills GF, Zabalgogeazcoa I (2008) Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses. Fungal Divers 33:87–100Google Scholar
  372. Sarasan M, Puthumana J, Job N, Han J et al (2017) Marine algicolous fendophytic Fungi—a promising drug resource of the era. J Microbiol Biotechnol 27:1039–1052PubMedGoogle Scholar
  373. Sarma VV, Hyde KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34Google Scholar
  374. Sarmiento-Ramirez JM, Sim J, Van West P, Dieguez-Uribeondo J (2016) Isolation of fungal pathogens from eggs of the endangered sea turtle species Chelonia mydas in Ascension Island. J Mar Biol Assoc UK 97:661–667CrossRefGoogle Scholar
  375. Schaumann K (1974) Zur Verbreitung saprophytischer hoherer Pilzkeime in der Hochsee. Erste quantitative Ergebnisse aus der Nordsee und dem NO-Atlantik. Veroeff Ins Meeresforsch Bremerhaven Supp 5:287–300Google Scholar
  376. Schmit JP, Shearer CA (2003) A checklist of mangrove associated fungi. Mycotaxon 80:423–477Google Scholar
  377. Schmit JP, Shearer CA (2004) Geographical and host distribution of lignicolous mangrove microfungi. Bot Mar 47:496–500CrossRefGoogle Scholar
  378. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S et al (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052CrossRefPubMedGoogle Scholar
  379. Schoch CL, Seifert KA, Huhndorf S, Robert V et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal NA barcode marker for fungi. PNAS 109:6241–6246CrossRefPubMedGoogle Scholar
  380. Scholz B (2015) Host-pathogen interactions between brackish and marine microphytobenthic diatom taxa and representatives of the Chytridiomycota, Oomycota and Labyrinthulomycota. Status report for the Icelandic Research Fund from May to June 2014.  https://doi.org/10.13140/rg.2.1.4769.6087
  381. Scholz B, Küpper FC, Vyverman W, Karsten U (2014a) Eukaryotic pathogens (Chytridiomycota and Oomycota) infecting marine microphytobenthic diatoms—a methodological comparison. J Phycol 50:1009–1019CrossRefPubMedGoogle Scholar
  382. Scholz MJ, Weiss TL, Jinkerson RE, Jing J et al (2014b) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464CrossRefPubMedPubMedCentralGoogle Scholar
  383. Scholz B, Guillou L, Marano AV, Neuhauser S et al (2016a) Zoosporic parasites infecting marine diatoms: a black box that needs to be opened. Fungal Ecol 19:59–76CrossRefPubMedPubMedCentralGoogle Scholar
  384. Scholz B, Küpper FC, Vyverman W, Karsten U (2016b) Effects of eukaryotic pathogens (Chytridiomycota and Oomycota) on marine microphytobenthic diatom community compositions in the Solthörn tidal flat (southern North Sea, Germany). E J Phycol 5:253–269CrossRefGoogle Scholar
  385. Scholz B, Küpper FC, Vyverman W, Ólafsson HG, Karsten U (2017a) Chytridiomycosis of marine diatoms—the potential role of chemotactic triggers and defense molecules in parasite-host interactions. Mar Drugs 15:26CrossRefPubMedCentralGoogle Scholar
  386. Scholz B, Küpper FC, Vyverman W, Ólafsson HG, Karsten U (2017b) Effects of environmental parameters on chytrid infection prevalence of four marine diatoms—a laboratory case study. Bot Mar 60:419–431CrossRefGoogle Scholar
  387. Schulz B, Boyle C (2005) The endophyte continuum. Mycol Res 109:661–686CrossRefPubMedPubMedCentralGoogle Scholar
  388. Schulz B, Draeger S, Del Cruz TE, Rheinheimer J et al (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51:219–234CrossRefGoogle Scholar
  389. Shivas RG, Young AJ, Crous PW (2009) Pseudocercospora avicenniae R.G. Shivas, A.J. Young & Crous, sp. nov. Fungal Planet 40Google Scholar
  390. Shoemaker G, Wyllie-Echeverria S (2013) Occurrence of rhizomal endobiotes in three temperate northeast pacific seagrasses. Aquat Bot 111:71–73CrossRefGoogle Scholar
  391. Seifert KA, Morgan-Jones G, Gams W, Kendricket B (2011) The genera of Hyphomycetes, CBS biodiversity series, vol 9. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The NetherlandsGoogle Scholar
  392. Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD et al (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers 73:73–144CrossRefGoogle Scholar
  393. Senanayake IC, Al-Sadi AM, Bhat JD, Camporesi E et al (2016) Phomatosporales ord. nov. and Phomatosporaceae fam. nov., to accommodate Lanspora, Phomatospora and Tenuimurus, gen. nov. Mycosphere 7:628–641CrossRefGoogle Scholar
  394. Senanayake IC, Crous PW, Groenewald JC, Maharachchikumbura SSN et al (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Stud Mycol 86:217–296CrossRefPubMedPubMedCentralGoogle Scholar
  395. Senanayake IC, Jeewon R, Chomnunti P, Wanasinghe DN et al (2018) Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Divers 93:241–443CrossRefGoogle Scholar
  396. Seto K, Kagami M, Degawa Y (2017) Phylogenetic position of parasitic chytrids on diatoms: characterization of a novel clade in Chytridiomycota. J Eukaryot Microbiol 64:383–393CrossRefPubMedGoogle Scholar
  397. Shang Z, Li L, Espósito BP, Salim AA et al (2015) New PKS-NRPS tetramic acids and pyridinone from an Australian marine-derived fungus Chaunopycnis sp. Org Biomol Chem 13:7795–7802CrossRefPubMedGoogle Scholar
  398. Shearer CA, Raja HA (2007) Freshwater Ascomycetes Database: hhtp://fungi.lifeIllinois.edu/Google Scholar
  399. Shenoy BD, Jeewon R, Wu WP, Bhat DJ et al (2006) Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycol Res 110:916–928CrossRefPubMedGoogle Scholar
  400. Simas T, Nunes JP, Ferreira JG (2001) Effects of global climate change on coastal salt marshes. Ecol Model 139:115CrossRefGoogle Scholar
  401. Somrithipol S, Sudhom N, Tippawan S, Jones EBG (2007) A new species of Falcocladium (Hyphomycetes) with turbinate vesicles from Thailand. Sydowia 59:148–153Google Scholar
  402. Soowannayan C, Tejab DNC, Yatip P, Mazumder FY et al (2019) Vibrio biofilm inhibitors screened from marine fungi protect shrimp against acute hepatopancreatic necrosis disease (AHPND). Aquaculture 499:1–8CrossRefGoogle Scholar
  403. Sparks AK (1982) Observations on the histopathology and probable progression of the disease caused by Trichomaris invadens, an invasive ascomycete, in the Tanner crab, Chionoecetes bairdi. J Invertebr Pathol 40:242–254CrossRefGoogle Scholar
  404. Sparks AK, Hibbits J (1979) Black mat syndrome, an invasive myctic disease of the tanner crab, Chionoecetes bairdi. J Invert Path 34:184–191CrossRefGoogle Scholar
  405. Sparrow FK (1937) The occurrence of saprophytic fungi in marine muds. Biol Bull 73:242–248CrossRefGoogle Scholar
  406. Sparrow FK (1960) Aquatic phycomycetes, 2nd edn. University of Michigan Press, Ann ArborGoogle Scholar
  407. Spatafora J, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580CrossRefPubMedGoogle Scholar
  408. Sridhar KR (2012) Decomposition of material in the sea. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 475–500Google Scholar
  409. Stanley SJ (1992) Observations on the seasonal occurrence of marine endophytic and parasitic fungi. Can J Bot 70:2089–2096CrossRefGoogle Scholar
  410. Steele CW (1967) Fungus populations in marine waters and coastal sands of the Hawaiian Line, and Phenix Islands. Pac Sci 21:317–331Google Scholar
  411. Stevens FL (1920) New or noteworthy Porto Rican fungi. Bot Gaz 70:399–402CrossRefGoogle Scholar
  412. Subrmaniyan R, Ponnambalam S, Thirunavukarassu T (2016) Inter species variations in cultivable endophytic fungal diversity among the tropical seagrasses. Proc Natl Acad Sci India, Sect B Biol SciGoogle Scholar
  413. Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J et al (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173CrossRefPubMedPubMedCentralGoogle Scholar
  414. Suetrong S, Klaysuban A, Sakayaroj J, Preedanaon S et al (2015) Tirisporellaceae, a new family in the order Diaporthales (Sordariomycetes, Ascomycota). Cryptog Mycol 36:319–330CrossRefGoogle Scholar
  415. Sullivan BK, Sherman TD, Damare VS, Lilje O et al (2013) Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecol 6:328–338CrossRefGoogle Scholar
  416. Summerbell RC (1983) The heterobasidiomycetous yeast genus Leucosporidium in an area of temperate climate. Can J Bot 61:1402–1410CrossRefGoogle Scholar
  417. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE 8:e72520CrossRefPubMedPubMedCentralGoogle Scholar
  418. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2014) Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass Enhalus acoroides. Indian J Mar Sci 43:785–797Google Scholar
  419. Supaphon P, Phongpaichit S, Sakayaroj J, Rukachaisirikul V et al (2017) Phylogenetic community structure of fungal endobiotes in seagrass species. Bot Mar 60:489–502CrossRefGoogle Scholar
  420. Suryanarayanan TS (2012) Fungal endosymbionts of seaweeds. In: Raghukumar C (ed) Biology of marine fungi, progress in molecular and subcellular biology, vol 53. Springer, Berlin, pp 53–69Google Scholar
  421. Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N et al (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468CrossRefGoogle Scholar
  422. Sutherland GK (1915a) New marine fungi on Pelvetia. New Phytol 14:33–42CrossRefGoogle Scholar
  423. Sutherland GK (1915b) Additional notes on marine Pyrenomycetes. New Phytol 14:183–193CrossRefGoogle Scholar
  424. Sutherland GK (1915c) New marine Pyrenomycetes. Trans Br Mycol Soc 5:147–154CrossRefGoogle Scholar
  425. Sutherland GK (1916a) Additional notes on marine Pyrenomycetes. Trans Br Mycol Soc 5:257–263CrossRefGoogle Scholar
  426. Sutherland GK (1916b) Marine fungi Imperfecti. New Phytol 15:35–48CrossRefGoogle Scholar
  427. Swart HJ (1963) Further investigations of the mycoflora in the soil of some mangrove swamps. Acta Bot Neerl 12:98–111CrossRefGoogle Scholar
  428. Swart HJ (1970) Penicillium dimorphosporium sp. nov. Trans Br Mycol Soc 55:310–313CrossRefGoogle Scholar
  429. Takishita K (2015) Diversity of microbial eukaryotes in deep sea chemosynthetic ecosystems illuminated by molecular techniques. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F (eds) Marine protists diversity and dynamics. Springer, pp 47–61Google Scholar
  430. Tao G, Liu ZY, Hyde KD, Lui XZ et al (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122Google Scholar
  431. Taxopeus J, Kozera CJ, OLeary SJB, Garbary DJ (2011) A reclassification of Mycophycias ascophylli (Ascomycota) based on nuclear large ribosomal subunit DNA sequences. Bot Mar 54:325–334Google Scholar
  432. Taylor TN, Remy W, Hass H (1992) Fungi from the Lower Devonian Rhynie chert: chytridiomycetes. Am J Bot 79:1233–1241CrossRefGoogle Scholar
  433. Taylor TN, Galtier J, Axsmith BJ (1994) Fungi from the Lower Carboniferous of central France. Rev Palaeobot Palynol 83:253–260CrossRefGoogle Scholar
  434. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573CrossRefGoogle Scholar
  435. Taylor TN, Hass H, Kerp H (1997) A cyanolichen from the Lower Devonian Rhynie chert. Am J Bot 84:992–1004CrossRefPubMedGoogle Scholar
  436. Taylor TN, Klavins SD, Krings M, Taylor EL et al (2004) Fungi from the Rhynie chert: a view from the dark side. Trans R Soc Edinburgh, Earth Sciences 94:457–473CrossRefGoogle Scholar
  437. Teal JM (1962) Energy flow in the salt marsh ecosystem of Georgia. Ecology 43:614–624, subunit DNA sequences. Bot Mar 54:325–334Google Scholar
  438. Tedersoo L, Snachez-Ramirez S, Köljalg U, Bahram M et al (2018) High-level classification of the fungi and a tool for evolutionary ecological analysis. Fungal Divers 90:135–159CrossRefGoogle Scholar
  439. Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46CrossRefGoogle Scholar
  440. Theelen B, Cafarchia C, Gaitanis G, Bassukas ID et al (2018) Malassezia ecology, pathophysiology, and treatment. Med Mycol 56:S10–S25CrossRefPubMedGoogle Scholar
  441. Tokura R, Shimooka V, Morigichi K, Yahi T et al (1982) Studies on the proper guidance of biological marine practise. VI. Observation of marine fungi in Hakoishi, Central Region of Japan. Kyoto Univ. of Edu Fushimi-ku, Kyoto 612. Japan 12:29–57Google Scholar
  442. Tomlinson PB (1986) The Biology of mangroves. Cambridge Univ Press, CambridgeGoogle Scholar
  443. Torta L, Piccolo SL, Piazza G, Burruano SD et al (2015) Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. Plant Biol 17:505–511CrossRefPubMedGoogle Scholar
  444. Van Hyning JM, Scarborough AM (1971) identification of fungal encrustation of the snow crah Chionoecetes bairdi. J Fish Res Board Can 30:1738–1739CrossRefGoogle Scholar
  445. Van Ryckegem G, Van Driessche G, Van Beeumen JJ, Verbeken A (2006) The estimated impact of fungi on nutrient dynamics during decomposition of Phragmites australis leaf sheaths and stems. Microb Ecol 52:564–574CrossRefPubMedGoogle Scholar
  446. Vélez CG, Letcher PM, Schultz S, Powell MJ, Churchill PF (2011) Molecular phylogenetic and zoospore ultrastructural analyses of Chytridium olla establish the limits of a monophyletic Chytridiales. Mycologia 103:118–130CrossRefPubMedGoogle Scholar
  447. Velmurugan N, Lee YS (2012) Enzymes from marine fungi: current research and future prospects. In: Jones EBG, Pang KL (eds) Marine and fungal-like organisms. De Gruyter, Germany, pp 441–474Google Scholar
  448. Venkatachalam A, Govinda Rajulu MB, Thirunavukkarasu N, Suryanarayanan TS (2015a) Endophytic fungi of marine algae and seagrasses: a novel source of chitin modifying enzymes. Mycosphere 6:345–355CrossRefGoogle Scholar
  449. Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015b) Distribution and diversity of endobiotes in seagrasses. Fungal Ecol 13:60–65CrossRefGoogle Scholar
  450. Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390Google Scholar
  451. Vrijmoed LLP (2000) Isolation and culture of higher filamentous fungi. In: Hyde KD, Pointing SB (eds) Marine mycology: a practical approach, fungal diversity research series 1. Fungal Divers Press, Hong Kong, pp 1–20Google Scholar
  452. Vohník M, Borovec O, Kolařík M (2016) Communities of cultivable root mycobionts of the seagrass Posidonia oceanica in the Northwest Mediterranean Sea are dominated by a hitherto undescribed pleosporalean dark septate endophyte. Microb Ecol 71:442–451CrossRefPubMedGoogle Scholar
  453. Vu D, Groenewald M, de Vries M, Gehrmann T et al (2018) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:136–154Google Scholar
  454. Wanasinghe DN, Jeewon R, Tibpromma S, Jones EBG, Hyde KD (2017) Saprobic Dothideomycetes in Thailand: Muritestudina gen. et sp. nov. (Testudinaceae) a new terrestrial pleosporalean ascomycete, with hyaline and muriform ascospores. Stud Fungi 2:219–234CrossRefGoogle Scholar
  455. Wang G, Johnson ZI (2009) Impact of parasitic fungi on the diversity and functional ecology of marine phytoplankton. In: Kersey WT, Munger SP (eds) Marine phytoplankton. Nova Science Publisher Inc., New York, USA, pp 211–228Google Scholar
  456. Wang X, Ma ZG, Song BB, Chen CH et al (2013) Advances in the study of the structures and bioactivities of metabolites isolated from mangrove-derived fungi in the South China. Sea Mar Drugs 11:3601–3616CrossRefPubMedGoogle Scholar
  457. Wang JF, Lin XP, Qin C, Liao SR et al (2014a) Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1-F6. J Antibiot 67:581–583CrossRefPubMedGoogle Scholar
  458. Wang X, Singh P, Gao Z, Zhang X et al (2014b) Distribution and diversity of planktonic fungi in the West Pacific Warm Pool. PLoS ONE 9:e101523CrossRefPubMedPubMedCentralGoogle Scholar
  459. Wang J, Wang Z, Ju Z, Wan J et al (2015a) Cytotoxic cytochalasins from marine-derived fungus Arthrinium arundinis. Planta Med 81:160–166CrossRefPubMedGoogle Scholar
  460. Wang QM, Begerow D, Groenewald M, Liu XZ (2015b) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53CrossRefPubMedPubMedCentralGoogle Scholar
  461. Wang QM, Begerow D, Groenewald M, Liu XZ et al (2015c) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83CrossRefPubMedPubMedCentralGoogle Scholar
  462. Wang QM, Yurkov AM, Göker M, Lumbsch HT et al (2015d) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189CrossRefPubMedGoogle Scholar
  463. Wang W, Li S, Chen Z, Li Z et al (2017) Secondary metabolites produced by the deep-sea-derived fungus Engyodontium album. Chem Nat Compd 53:224–226CrossRefGoogle Scholar
  464. Wetsteyn LPMJ, Peperzak L (1991) Field observations in the oosterschelde (The Netherlands) on Coscinodiscus concinnus and Coscinodiscus granii (Bacillariophyceae) infected by the marine fungus Lagenisma coscinodisci (Oomycetes). Hydrobiol Bull 25:15–21CrossRefGoogle Scholar
  465. Wijayawardene NN, Bhat DJ, Hyde KD, Camporesi E et al (2014) Camarosporium sensu stricto in Pleosporinae, Ploepsorales with two new specvies. Phytotaxa 183:16–26CrossRefGoogle Scholar
  466. Wijayawardene NN, Hyde KD, Tibpromma S, Wamnasinghe DN et al (2017a) Towards incorporating asexual fungi in a natural classification: check-list and notes. Mycosphere 8:1457–1554CrossRefGoogle Scholar
  467. Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL et al (2017b) Notes for genera: Ascomycota. Fungal Divers 86:1–594CrossRefGoogle Scholar
  468. Wijayawardene NN, Hyde KD, Lumbsch T, Liu JK et al (2018) Outline of Ascomycota—2017. Fungal Divers 88:167–263CrossRefGoogle Scholar
  469. Winter G (1887) Exotische Pilze IV. Hedwigia 26:6–18Google Scholar
  470. Wright EP (1881) On Blodgettia confervoides Harvey, forming a new genus and species of fungi. Trans R Ir Acad 28:21–26Google Scholar
  471. Wu B, Oesker V, Wiese J, Schmaljohann R, Imhoff JF (2014) Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12:1208–1219CrossRefPubMedPubMedCentralGoogle Scholar
  472. Xing X, Guo S (2011) Fungal endophyte communities in four Rhizophoraceae mangrove species on the south coast of China. Ecol Res 26:403–409CrossRefGoogle Scholar
  473. Xing XK, Chen J, Xu MJ, Lin WH et al. (2010) Fungal endobiotes associated with Sonneratia (Sonneratiaceae) mangrove plants on the south coast of China. Forest PatholGoogle Scholar
  474. Xu W, Pang KL, Luo ZH (2014) High fungal diversity and abundance recovered in the Deep-Sea sediments of the Pacific Ocean. Microb Ecol 68:688–698CrossRefPubMedGoogle Scholar
  475. Xu R, Li XM, Wang BG (2016a) Penicisimpins A-C, three new dihydroisocoumarins from Penicillium simplicissimum MA-332, a marine fungus derived from the rhizosphere of the mangrove plant Bruguiera sexangula var. Rhynchopetala. Phytochem Lett 17:114–118CrossRefGoogle Scholar
  476. Xu W, Luo ZH, Guo S, Pang KL (2016b) Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS,18S and 28S ribosomal DNA regions. Deep-Sea Res I 10:951–960Google Scholar
  477. Xu W, Guo S, Pang KL, Luo ZH (2017) Fungi associated with chimney and sulfide samples from a South Mid-Atlantic Ridge hydrothermal site: distribution, diversity and abundance. Deep-Sea Res Part I 123:48–55CrossRefGoogle Scholar
  478. Xu W, Gong LF, Pang KL, Luo ZH (2018) Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep-Sea Res Part I 131:16–26CrossRefGoogle Scholar
  479. Yao Q, Wang J, Zhang X, Nong X et al (2014) Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar Drugs 12:5902–5915CrossRefPubMedPubMedCentralGoogle Scholar
  480. Yarden (2014) Fungal association with sessile marine invertebrates. Front Microbiol 5:228CrossRefPubMedPubMedCentralGoogle Scholar
  481. Yi L, Cui CB, Li CW, Peng JX et al (2016) Chromosulfine, a novel cyclopentachromone sulfide produced by a marine-derived fungus after introduction of neomycin resistance. RSC Adv 6:43975–43979CrossRefGoogle Scholar
  482. Zalar P, de Hoog GS, Schroers HJ, Crous PW et al (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183CrossRefPubMedPubMedCentralGoogle Scholar
  483. Zebrowski G (1936) New genera of Cladochytriaceae. Ann Miss Bot Gard 23:553–564CrossRefGoogle Scholar
  484. Zhang XY, Zhang Y, Xu XY, Qi SH (2013a) Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr Microbiol 67:525–530CrossRefPubMedGoogle Scholar
  485. Zhang Y, Fournier J, Phookamsak R, Bahkali AH et al (2013b) Halotthiaceae fam. nov. (Pleosporales) accommodates the new genus Phaeoseptum and several other aquatic genera. Mycologia 105(3):603–609CrossRefPubMedGoogle Scholar
  486. Zhang P, Mandi A, Li XM, Du FY et al (2014) Varioxepine A, a 3H-oxepine-containing alkaloid with a new oxa-cage from the marine algal-derived endophytic fungus Paecilomyces variotii. Org Lett 16:4834–4837CrossRefPubMedGoogle Scholar
  487. Zhao RL, Zhou JL, Chen J, Margaritescu S et al (2016) Towards standardizing taxonomic ranks using divergence times—a case study for reconstruction of the Agaricus taxonomic system. Fungal Divers 78:239–292CrossRefGoogle Scholar
  488. Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M et al (2018) A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Divers 84:43–74CrossRefGoogle Scholar
  489. Zheng J, Zhu H, Hong K, Wang Y et al (2009) Novel cyclic hexapeptides from marine-derived fungus, Aspergillus sclerotiorum PT06-1. Org Lett 11:5262–5265CrossRefPubMedGoogle Scholar
  490. Zheng J, Wang Y, Wang J, Liu P et al (2013) Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 17:963–971CrossRefPubMedGoogle Scholar
  491. Zhou Y, Debbab A, Wray V, Lin W et al (2014) Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp. Tetrahedron Lett 55:2789–2792CrossRefGoogle Scholar
  492. Zuccaro A, Mitchell JI (2005) Fungal communities of seaweeds. In: Deighton J, White JF, Oudemans P (eds) The fungal community. CRC, Taylor and Francis, New YorkGoogle Scholar
  493. Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466CrossRefPubMedGoogle Scholar
  494. Zuccaro A, Summerbell RC, Gams W, Schroers H-F, Mitchell JI (2004) A new Acremonium species associated with Fucus spp, and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–297Google Scholar
  495. Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J et al (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ è 74:931–941CrossRefPubMedGoogle Scholar

Copyright information

© School of Science 2019

Authors and Affiliations

  • E. B. Gareth Jones
    • 1
    • 2
  • Ka-Lai Pang
    • 3
  • Mohamed A. Abdel-Wahab
    • 1
    • 4
    Email author
  • Bettina Scholz
    • 5
  • Kevin D. Hyde
    • 6
  • Teun Boekhout
    • 7
    • 8
  • Rainer Ebel
    • 9
  • Mostafa E. Rateb
    • 10
  • Linda Henderson
    • 11
  • Jariya Sakayaroj
    • 12
  • Satinee Suetrong
    • 13
  • Monika C. Dayarathne
    • 6
  • Vinit Kumar
    • 6
    • 17
  • Seshagiri Raghukumar
    • 14
  • K. R. Sridhar
    • 15
  • Ali H. A. Bahkali
    • 1
  • Frank H. Gleason
    • 16
  • Chada Norphanphoun
    • 6
  1. 1.Deptartment of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.HampshireUK
  3. 3.Institute of Marine Biology and Centre of Excellence for the OceansNational Taiwan Ocean UniversityKeelungTaiwan
  4. 4.Department of Botany and Microbiology, Faculty of ScienceSohag UniversitySohagEgypt
  5. 5.BioPol ehf, Marine BiotechnologySkagaströndIceland
  6. 6.Center of Excellence in Fungal Diversity Mae Fah Luang UniversityMuang Chiang RaiThailand
  7. 7.Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
  8. 8.Institute of Biodiversity and Ecological Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
  9. 9.Department of Chemistry, Marine Biodiscovery CentreUniversity of AberdeenAberdeenUK
  10. 10.School of Computing, Engineering & Physical SciencesUniversity of the West of ScotlandPaisleyUK
  11. 11.School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
  12. 12.School of ScienceWalailak UniversityNakhon Si ThammaratThailand
  13. 13.Fungal Biodiversity Laboratory (BFBD)National Center for Genetic Engineering and Biotechnology (BIOTEC)Khlong LuangThailand
  14. 14.Tamra’GoaIndia
  15. 15.Department of BiosciencesMangalore UniversityMangaloreIndia
  16. 16.School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
  17. 17.Department of Entomology and Plant Pathology, Faculty of AgricultureChiang Mai UniversityChiang MaiThailand

Personalised recommendations