Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera)

  • Asha J. Dissanayake
  • Witoon Purahong
  • Tesfaye Wubet
  • Kevin D. Hyde
  • Wei Zhang
  • Haiying Xu
  • Guojun Zhang
  • Chunyuan Fu
  • Mei Liu
  • Qikai Xing
  • Xinghong Li
  • Jiye Yan
Article
  • 108 Downloads

Abstract

Grapevines (Vitis vinifera) are colonized by ubiquitous microorganisms known as endophytes, which may have advantageous or neutral effects without causing disease symptoms. Certain endophytes are uncultivable, so culture-independent approaches such as next generation sequencing (NGS) can help for a better understanding of their ecology and distribution. To date, there are no studies which directly link NGS results with taxa derived from a culturing approach, integrating morphological and multi-gene phylogenetic analysis of endophytes. In this study, a culture-dependent and high-resolution culture-independent approach (next generation sequencing) were used to identify endophytes in grapevine stems. In the culture-dependent approach, a total of 94 isolates were recovered from 84 of 144 healthy grapevine stem fragments (colonization rate = 58.3%). The study is unique as we used subsets of combined multi-gene regions to identify the endophytes to species level. Based on each multi-gene phylogenetic analysis, 28 species belong to 19 genera (Acremonium, Alternaria, Arthrinium, Ascorhizoctonia, Aspergillus, Aureobasidium, Bipolaris, Botryosphaeria, Botrytis, Chaetomium, Cladosporium, Curvularia, Hypoxylon, Lasiodiplodia, Mycosphaerella, Nigrospora, Penicillium, Phoma, Scopulariopsis) were identified. A higher number of culturable fungi were obtained from 13 year-old vines, followed by eight and three year-old vines. In the culture-independent approach, a fungal richness of 59 operational taxonomic units (OTU) was detected, being highest in 13 year-old grapevines, followed by eight and three years. Even though the cultivation approach detected lower fungal richness, the results related to stem are consistent for fungal community composition and richness. Comparison of the fungal taxa identified by the two approaches resulted in an overlap of 53% of the fungal genera. Due to interspecific variability of the sequences from NGS, in many cases the OTUs (even with the highly abundant ones) were only assignable to order, family or genus level. Incorporating multi-gene phylogenies we successfully identified many of the NGS derived OTUs with poor taxonomic information in reference databases to the genus or species levels. Hence, this study signifies the importance of applying both culture-dependent and culture-independent approaches to study the fungal endophytic community composition in Vitis vinifera. This principle could also be applied to other host species and ecosystem level studies.

Keywords

Molecular data Morphological characteristics Multi-gene phylogeny Mycobiome Next generation sequencing 

Notes

Acknowledgements

This work was financially supported by Beijing Talent Program for Dr. Jiye Yan, CARS-29, Beijing science and technology project D17110001617002. We thank Dr. Heng Gui for his support to submit Raw Illumina reads to the Sequence Read Archive (SRA) of National Center for Biotechnology Information (NCBI).

Supplementary material

13225_2018_399_MOESM1_ESM.doc (170 kb)
Supplementary material 1 (DOC 169 kb)

References

  1. Andreolli M, Lampis S, Zapparoli G, Angelini E, Vallini G (2016) Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol Res 183:42–52PubMedGoogle Scholar
  2. Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT, Dai DQ, Dai YC, Daranagama DA, Jayawardena RS, Lücking R, Ghobad-Nejhad M, Niskanen T, Thambugala KM, Voigt K, Zhao RL, Li GJ, Doilom M, Boonmee S, Yang ZL, Cai Q, Cui YY, Bahkali AH, Chen J, Cui BK, Chen JJ, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, Hashimoto A, Hongsanan S, Jones EBG, Larsson E, Li WJ, Li QR, Liu JK, Luo ZL, Maharachchikumbura SSN, Mapook A, McKenzie EHC, Norphanphoun C, Konta S, Pang KL, Perera RH, Phookamsak R, Phukhamsakda C, Pinruan U, Randrianjohany E, Singtripop C, Tanaka K, Tian CM, Tibpromma S, Abdel-Wahab MA, Wanasinghe DN, Wijayawardene NN, Zhang JF, Zhang H, Abdel-Aziz FA, Wedin M, Westberg M, Ammirati JF, Bulgakov TS, Lima DX, Callaghan TM, Callac P, Chang CH, Coca LF, Dal-Forno M, Dollhofer V, Fliegerová K, Greiner K, Griffith GW, Ho HM, Hofstetter V, Jeewon R, Kang JC, Wen TC, Kirk PM, Kytovuori I, Lawrey JD, Xing J, Li H, Liu ZY, Liu XZ, Liimatainen K, Thorsten Lumbsch H, Matsumura M, Moncada B, Nuankaew S, Parnmen S, Santiago ALCMDA, Sommai S, Song Y, de Souza CAF, de Souza- Motta CM, Su HY, Suetrong S, Wang Y, FongWS Yuan HS, Zhou LW, Réblová M, Fournier J, Camporesi E, Luangsa-ard JJ, Tasanathai K, Khonsanit A, Thanakitpipattana D, Somrithipol S, Diederich P, Millanes AM, Common RS, Stadler M, Yan JY, Li XH, Lee HW, Nguyen TTT, Lee HB, Battistin E, Marsico O, Vizzini A, Vila J, Ercole E, Eberhardt U, Simonini G, Wen HA, Chen XH, Miettinen O, Spirin V, Hernawati NV (2015) Fungal diversity notes 111–252 taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75:27–274Google Scholar
  3. Arnold A (2002) Neotropical fungal endophytes: diversity and ecology. PhD thesis, University of Arizona, TucsonGoogle Scholar
  4. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549PubMedGoogle Scholar
  5. Assante G, Dallavalle S, Malpezzi L, Nasini G, Burruano S, Torta L (2005) Acremines A-F, novel secondary metabolites produced by a strain of an endophytic Acremonium, isolated from sporangiophores of Plasmopara viticola in grapevine leaves. Tetrahedron 61:7686–7692Google Scholar
  6. Berbee ML, Pirseyedi M, Hubbard S (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91:964–977Google Scholar
  7. Bhattacharyya LH, Borah G, Parkash V, Bhattacharyya PN (2017) Fungal endophytes associated with the ethnomedicinal plant Meyna Spinosa Roxb. Curr Life Sci 3:1–5Google Scholar
  8. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59PubMedGoogle Scholar
  9. Bonfim JA, Vasconcellos RLF, Baldesin LF, Sieber TN, Cardoso EJBN (2016) Dark septate endophytic fungi of native plants along an altitudinal gradient in the Brazilian Atlantic forest. Fungal Ecol 20:202–210Google Scholar
  10. Bruez E, Baumgartner K, Bastien S, Travadon R, Guerin-Dubrana L, Rey P (2016) Various fungal communities colonise the functional wood tissues of old grapevines externally free from grapevine trunk disease symptoms. Aust J Grape Wine Res 22:288–295Google Scholar
  11. Brum MCP, Araújo WL, Maki CS, Azevedo JL (2012) Endophytic fungi from Vitis labrusca L. (‘Niagara Rosada’) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11:4187–4197PubMedGoogle Scholar
  12. Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl Environ Microbiol 77:5018–5022PubMedPubMedCentralGoogle Scholar
  13. Bullington L, Larkin BG (2015) Using direct amplification and next-generation sequencing technology to explore foliar endophyte communities in experimentally inoculated western white pines. Fungal Ecol 17:170–178Google Scholar
  14. Burruano S, Alfonzo A, Piccolo SL, Conigliaro G, Mondello V, Torta L, Moretti M, Assante G (2008) Interaction between Acremonium byssoides and Plasmopara viticola in Vitis vinifera. Phytopathol Mediter 47:122–131Google Scholar
  15. Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655PubMedGoogle Scholar
  16. Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204Google Scholar
  17. Campisano A (2012) Profiling of grapevine fungal endophytic community using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Istituto Agario Di San Michele All AdigeGoogle Scholar
  18. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, González Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedPubMedCentralGoogle Scholar
  19. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556Google Scholar
  20. Chagnon PL, U’Ren JM, Miadlikowska J, Lutzoni F, Arnold AE (2016) Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia 180:181–191PubMedGoogle Scholar
  21. China Agriculture Yearbook (2014) Ministry of Agriculture, PRC. China Agriculture Press. People’s Republic of China, BeijingGoogle Scholar
  22. Christian NS, Sullivan C, Visser N, Clay K (2016) Plant host and geographic location drive endophyte community composition in the face of perturbation. Microb Ecol.  https://doi.org/10.1007/s00248-016-0804-y PubMedGoogle Scholar
  23. Clay K, Shearin ZRC, Bourke KA, Bickford WA, Kowalski KP (2016) Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes. Biol Invasions 18:2703–2716Google Scholar
  24. Compant S, Birgit M, Colli-Mull J, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197PubMedGoogle Scholar
  25. Crouch JA, Clarke BB, Hillman BI (2009) What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia 101:648–656PubMedGoogle Scholar
  26. Dastogeer KMG, Li H, Sivasithamparam K, Jones MGK, Wylie SJ (2017) Host specificity of endophytic mycobiota of wild Nicotiana plants from arid regions of Northern Australia. Microb Ecol 75:74–87PubMedGoogle Scholar
  27. David AS, Seabloom EW, May G (2017) Disentangling environmental and host sources of fungal endophyte communities in an experimental beachgrass study. Mol Ecol 26:21.  https://doi.org/10.1111/mec.14354 Google Scholar
  28. de Felice DV, Solfrizzo M, De Curtis F, Lima G, Visconti A, Castoria R (2008) Strains of Aureobasidium pullulans can lower ochratoxin A contamination in wine grapes. Phytopathology 98:1261–1270PubMedGoogle Scholar
  29. Deagle BE, Clarke LJ, Kitchener JA, Polanowski AM, Davidson AT (2017) Genetic monitoring of open ocean biodiversity: an evaluation of DNA metabarcoding for processing continuous plankton recorder samples. Mol Ecol Resour.  https://doi.org/10.1111/1755-0998.12740 PubMedGoogle Scholar
  30. Donayre DKM, Dalisay TU, Bayot RG, Baltazar AM (2014) Diversity and tissue specificity of endophytic fungi in barnyard grass (Echinochloa glabrescens Munro ex Hook. f.). Asia Life Sci 23:725–741Google Scholar
  31. Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA genes phylogenies reveal uncharacterized fungal endophytes. Fungal Divers 23:121–138Google Scholar
  32. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998PubMedGoogle Scholar
  33. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200PubMedPubMedCentralGoogle Scholar
  34. Elmer PAG, Reglinski T (2006) Bio-suppression of Botrytis cinerea in grapes. Plant Pathol 55:155–177Google Scholar
  35. Fesel PH, Zuccaro A (2016) Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Curr Opin Microbiol 32:103–112PubMedGoogle Scholar
  36. Fuchs B, Krischke M, Mueller MJ, Krauss J (2017) Plant age and seasonal timing determine endophyte growth and alkaloid biosynthesis. Fungal Ecol 29:52–58Google Scholar
  37. García E, Alonso A, Platas G, Sacristán S (2013) The endophytic mycobiota of Arabidopsis thaliana. Fungal Divers 60:71–89Google Scholar
  38. Garnica S, Schön ME, Abarenkov K, Riess K, Liimatainen K, Niskanen T, Dima B, Soop K, Frøslev TG, Jeppesen TS, Peintner U, Kuhnert-Finkernagel R, Brandrud TE, Saar G, Oertel B, Ammirati JF (2016) Determining threshold values for barcoding fungi: lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol Ecol.  https://doi.org/10.1093/femsec/fiw045 PubMedGoogle Scholar
  39. Garoé NT, Cabrera R, Burgos-Reyes RL, Da Silva E, Giménez C, Cosoveanu A, Brito N (2012) Endophytic fungi from Vitis vinifera L. isolated in Canary Islands and Azores as potential biocontrol agents of Botrytis cinerea Pers.:Fr. J Horticult For Biotechnol 16:1–6Google Scholar
  40. Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers 47:19–27Google Scholar
  41. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  42. Gomez CA, Budvytiene I, Zemek AJ, Banaei N (2017) Performance of targeted fungal sequencing for culture-independent diagnosis of invasive fungal disease. Clin Infect Dis.  https://doi.org/10.1093/cid/cix728 Google Scholar
  43. González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42Google Scholar
  44. Goveas SW, Madtha R, Nivas SK, D’Souza L (2011) Isolation of endophytic fungi from Coscinium fenestratum—a red listed endangered medicinal plant. Eurasia J Biosci 5:48–53Google Scholar
  45. Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085Google Scholar
  46. Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630Google Scholar
  47. Guo LD, Hyde KD, Liew ECY (2001) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13PubMedGoogle Scholar
  48. Guo LD, Huang GR, Wang Y, He WH, Zheng WH, Hyde KD (2003) Molecular identification of white morphotype strains of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688PubMedGoogle Scholar
  49. Gupta S, Chaturvedi P (2017) Foliar endophytic diversity of Centella asiatica (L.) urban in relation to different seasons and leaf age. Int J Curr Microbiol Appl Sci 6:468–477Google Scholar
  50. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504PubMedPubMedCentralGoogle Scholar
  51. Haghighi MT, Shahdoust E (2015) Molecular detection of endophytic, Myrothecium spp. by ITS sequencing technique. Int J Res Stud Biosci 3:60–66Google Scholar
  52. Hall T (2006) Bioedit. Department of Microbiology, North Carolina State University. http://www.mbioncsuedu/BioEdit/Bioedithtml
  53. Hammer Q, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  54. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralGoogle Scholar
  55. Heinonsalo J, Buée M, Vaario LM (2016) Root-endophytic fungi cause morphological and functional differences in Scots pine roots in contrast to ectomycorrhizal fungi. Can J Bot 95:203–210Google Scholar
  56. Hoppe B, Purahong W, Wubet T, Kahl T, Bauhus J, Arnstadt T, Hofrichter M, Buscot F, Krüger D (2016) Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers 77:367–379Google Scholar
  57. Huang Y, Kuang Z, Wang W, Cao L (2016) Exploring potential bacterial and fungal biocontrol agents transmitted from seeds to sprouts of wheat. Biol Control 98:27–33Google Scholar
  58. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173Google Scholar
  59. Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE, Cai L, de Cock WAM, Dissanayake AJ, Glocking SL, Goonasekara ID, Gorczak M, Hahn M, Jayawardena RS, van Kan JAL, Laurence H, Lévesque A, Li XH, Liu JK, Maharachchikumbura SSN, Manamgoda DS, Martin FN, McKenzie EHC, McTaggart AR, Mortimer PE, Nair PVR, Pawlowska J, Rintoul TL, Shivas RG, Spies ARCFJ, Summerell BA, Taylor PWJ, Terhem RB, Udayanga D, Vaghefi N, Walthe G, Wilk M, Wrzosek M, Xu JC, Yan J, Zhou N (2014) One stop shop: backbone trees for important phytopathogenic genera: I. Fungal Divers 67:21–125Google Scholar
  60. Hyde KD, Hongsanan S, Jeewon R, Bhat DJ, McKenzie EHC, Jones EBG, Phookamsak R, Ariyawansa HA, Boonmee S, Zhao Q, Awad Abdel-Aziz FA, Abdel-Wahab MA, Banma S, Chomnunti P, Cui B, Daranagama DA, Das K, Dayarathn MC, de Silva NI, Dissanayake AJ, Doilom M, Ekanayaka AH, Gibertoni TB, Neto AG, Huang SK, Jayasiri SC, Jayawardena RS, Konta S, Lee HB, Li W, Lin C, Liu JK, Lu YZ, Luo ZL, Manawasinghe IS, Manimohan P, Mapook A, Niskanen T, Norphanphoun C, Papizadeh M, Perera RH, Phukhamsakda C, Richter C, Santiago ALCMA, Santos ERD, Senanayake IC, Tanaka K, Tennakoon TMDS, Thambugala KM, Tian Q, Tibpromma S, Thongbai B, Vizzini A, Wanasinghe DN, Wijayawardene NN, Wu H, Yang J, Zeng X, Zhang H, Zhang JF, Bulgakov TS, Camporesi E, Bahkali AH, Amoozegar MA, Neta LSA, Ammirati JF, Baghela A, Bhatt RP, Bojantchev D, Buyck B, Silva GA, Lima CLF, Oliveira RJV, Souza CAF, Dai YC, Dima B, Duong TT, Ercole E, Mafalda-Freire F, Ghosh A, Hashimoto A, Kamolhan S, Kang JC, Karunarathna SC, Kirk PM, Kytovuori I, Lantieri A, Liimatainen K, Liu ZY, Liu XH, Lucking R, Medardi G, Mortimer PE, Nguyen TTT, Promputtha I, Raj KNA, Reck MA, Lumyong S, Fazeli SAS, Stadler M, Soudi MR, Su HY, Takahashi T, Tangthirasunun N, Uniya P, Wang Y, Wen TC, Xu JC, Zhang Z, Zhao Y, Zhou JL, Zhu L (2016) Fungal diversity notes 367–491: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 80:1–270Google Scholar
  61. Jayawardena RS, Purahong W, Zhang W, Wubet T, Li XH, Liu M, Zhao W, Hyde KD, Liu JH, Yan JY (2018) Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Divers.  https://doi.org/10.1007/s13225-018-0398-4 Google Scholar
  62. Jeewon R, Liew ECY, Simpson JA, Hodgkiss IJ, Hyde KD (2003) Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. Mol Phylogenet Evol 27:372–383PubMedGoogle Scholar
  63. Kaewkla O, Franco CMM (2016) Kribbella pittospori sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of an Australian native apricot tree, Pittosporum angustifolium. Int J Syst Evol Microbiol 66:2284–2290PubMedGoogle Scholar
  64. Katoh K, Toh H (2010) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298Google Scholar
  65. Ko TWK, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120Google Scholar
  66. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277PubMedGoogle Scholar
  67. Kortekamp A (1997) Epicoccum nigrum link: a biological control, agent of Plasmopara viticola (Berk. et Curt.) Berl. et De Toni? Vitis 36:215–216Google Scholar
  68. Kraková L, Šoltys Otlewska A, Pietrzak K, Purkrtová S, Savická D, Puškárová A, Bučková M, Szemes T, Budiš J, Demnerová K, Gutarowska B, Pangallo D (2017) Comparison of methods for identification of microbial communities in book collections: Culture-dependent (sequencing and MALDI-TOF MS) and culture-independent (Illumina MiSeq). Int Biodeterior Biodegrad.  https://doi.org/10.1016/j.ibiod.2017.02.015 Google Scholar
  69. Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66Google Scholar
  70. Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80Google Scholar
  71. Liu JK, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SSN, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dissanayake AJ, Doilom M, Dsouza MJ, Fan XL, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Persoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe DN, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamcık S, Bahkali AH, Boonyuen N, Bulgakov T, Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstetter V, Kang JC, Lewis D, Li XH, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verbeken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E (2015) Fungal Diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Divers 72:1–197Google Scholar
  72. Liu W, Zhou Z, Liu Y, Hu X, Guo Y, Li J (2017a) Application of high-throughput internal transcribed spacer rRNA metagenomics analysis in deciphering endophytic fungi diversity of Dendrobium officinale. J Biobased Mater Bioenergy 11:106–118Google Scholar
  73. Liu T, Greenslade A, Yang S (2017b) Levels of rhizome endophytic fungi fluctuate in Paris polyphylla var. yunnanensis as plants age. Plant Divers 39:60–64Google Scholar
  74. Lobo J, Shokralla S, Costa MH, Hajibabaei M, Costa FO (2017) DNA metabarcoding for high-throughput monitoring of estuarine macrobenthic communities. Sci Rep 7:15618PubMedPubMedCentralGoogle Scholar
  75. Lòpez-Fernàndez S, Mazzoni V, Pedrazzoli F, Pertot I, Campisano A (2017) A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Front Microbiol 8:834PubMedPubMedCentralGoogle Scholar
  76. Lücking R, Moncada B (2017) Dismantling Marchandiomphalina into Agonimia (Verrucariaceae) and Lawreymyces gen. nov. (Corticiaceae): setting a precedent to the formal recognition of thousands of voucherless fungi based on type sequences. Fungal Divers 84:119–138Google Scholar
  77. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963PubMedPubMedCentralGoogle Scholar
  78. Mahmoud FM, Krimi Z, Maciá-Vicente JG, Errahmani MB, Lopez-Llorca LV (2017) Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes. Revista Iberoamericana de Micología 34:116–120Google Scholar
  79. Martín-García J, Espiga E, Pando V, Diez JJ (2011) Factors influencing endophytic communities in poplar plantations. Silva Fennica 45:169–180Google Scholar
  80. Martini M, Musetti R, Grisan S, Polizzotto R (2009) DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis 93:993–998Google Scholar
  81. McKinnon A (2016) Plant tissue preparation for the detection of an endophytic fungus in planta. Microbial Based Biopestic 1477:167–173Google Scholar
  82. Mendoza LM, Neef A, Vignolo G, Belloch C (2017) Yeast diversity during the fermentation of Andean chicha: a comparison of high-throughput sequencing and culture-dependent approaches. Food Microbiol 67:1–10PubMedGoogle Scholar
  83. Morgan HH, Toit M, Setati ME (2017) The grapevine and wine microbiome: insights from high-throughput amplicon sequencing. Front Microbiol 8:820PubMedPubMedCentralGoogle Scholar
  84. Muggia L, Kopun T, Grube M (2017) Effects of growth media on the diversity of culturable fungi from lichens. Molecules 22:824–846Google Scholar
  85. Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C, D’Ambrosio M, Sanità di Toppi L, Pertot I (2006) Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology 96:689–698PubMedGoogle Scholar
  86. Nascimento TL, Oki Y, Lima DMM, Almeida-Cortez JS, Fernandes GW, Souza-Motta CM (2015) Biodiversity of endophytic fungi in different leaf ages of Calotropis procera and their antimicrobial activity. Fungal Ecol 14:79–86Google Scholar
  87. Navarro-Meléndez AL, Heil M (2014) Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, lima bean (Phaseolus lunatus). J Chem Ecol 40:816–825PubMedGoogle Scholar
  88. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248Google Scholar
  89. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform 4:193–201Google Scholar
  90. Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson KH, Larsson E (2012) Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4:37–63Google Scholar
  91. Nilsson RH, Tedersoo L, Ryberg M (2015) A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes Environ 30:145–150PubMedPubMedCentralGoogle Scholar
  92. Nylander JAA (2004) MrModeltest v2. Program distributed by the author Evolutionary Biology Centre. Uppsala University, UppsalaGoogle Scholar
  93. Olejniczak P, Lembicz M (2007) Age-specific response of the grass Puccinellia distans to the presence of a fungal endophyte. Oecologia 152:485–494PubMedGoogle Scholar
  94. Osono T, Mori A (2005) Seasonal and leaf age-dependent changes in occurrence of phyllosphere fungi in giant dogwood. Mycoscience 46:273–279Google Scholar
  95. Ovaskainen O, Nokso-Koivisto J, Hottola J, Rajala T, Pennanen T, Ali-Kovero H, Miettinen O, Oinonen P, Auvinen P, Paulin L, Larsson KH, Mäkipää R (2010) Identifying wood-inhabiting fungi with 454 sequencing—what is the probability that BLAST gives the correct species? Fungal Ecol 3:274–283Google Scholar
  96. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  97. Park YH, Kim YC, Park SU, Lim HS, Kim JB, Cho BK, Bae H (2012) Age-dependent distribution of fungal endophytes in Panax ginseng roots cultivated in Korea. J Ginseng Res 36:327–333PubMedPubMedCentralGoogle Scholar
  98. Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Divers 75:1–25Google Scholar
  99. Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, Gomes AC (2014) Unravelling the diversity of grapevine microbiome. PLoS ONE 9:e85622PubMedPubMedCentralGoogle Scholar
  100. Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD (2005) Ribosomal DNA fingerprinting in the identification of non sporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers 20:167–186Google Scholar
  101. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590PubMedGoogle Scholar
  102. Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99Google Scholar
  103. Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7Google Scholar
  104. Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, Hofrichter M, Krüger D, Buscot F (2016) Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol 25:4059–4074PubMedGoogle Scholar
  105. Purahong W, Pietsch KA, Lentendu G, Schöps R, Bruelheide H, Wirth C, Buscot F, Wubet T (2017a) Characterization of unexplored deadwood mycobiome in highly diverse subtropical forests using culture-independent molecular technique. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.00574 Google Scholar
  106. Purahong W, Wubet T, Krüger D, Buscot F (2018) Molecular evidence strongly supports deadwood inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME J 12:289–295Google Scholar
  107. Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, Araujo IS, Mattos CRR, Goes-Neto A (2011) Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers 47:75–84Google Scholar
  108. Roe AD, Rice AV, Bromilow SE, Cooke JEK, Sperling FAH (2010) Multilocus species identification and fungal DNA barcoding: Insights from blue stain fungal symbionts of the mountain pine beetle. Mol Ecol Resour 10:946–959PubMedGoogle Scholar
  109. Rondot Y, Reineke A (2016) Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biol Control.  https://doi.org/10.1016/j.biocontrol.2016 Google Scholar
  110. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedGoogle Scholar
  111. Ruiz-Pérez CA, Zambrano MM (2017) Endophytic microbial community DNA extraction from the plant phyllosphere. Bio-protocol 7:1–5Google Scholar
  112. Sánchez S, Bills GF, Domínguez Acuña L, Zabalgogeazcoa I (2010) Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 41:115–123Google Scholar
  113. Schena L, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S (1999) Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biol Technol 17:189–199Google Scholar
  114. Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191PubMedPubMedCentralGoogle Scholar
  115. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246PubMedPubMedCentralGoogle Scholar
  116. Setati ME, Jacobson D, Bauer FF (2015) Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must mycobiome in three South African vineyards employing distinct agronomic systems. Front Microbiol 6:1358PubMedPubMedCentralGoogle Scholar
  117. Staats M, van Baarlen P, van Kan JAL (2005) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22:333–346PubMedGoogle Scholar
  118. Steinrucken TV, Bissett A, Powell JR, Raghavendra AKH, van Klinken RD (2016) Endophyte community composition is associated with dieback occurrence in an invasive tree. Plant Soil 405:311–323Google Scholar
  119. Stone JK, Polishook JD, White JF Jr (2004) Endophytic fungi. In: Mueller G, Foster M, Bills G (eds) Biodiversity of fungi. Inventory and monitoring methods. Academic, Amsterdam, p 728Google Scholar
  120. Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223PubMedGoogle Scholar
  121. Supaphon P, Phongpaichit S, Sakayaroj J, Rukachaisirikul V, Kobmoo N, Spatafora JW (2017) Phylogenetic community structure of fungal endophytes in seagrass species. Bot Mar.  https://doi.org/10.1515/bot-2016-0089 Google Scholar
  122. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony and other methods, version 4. Sinauer Associates, SunderlandGoogle Scholar
  123. Szink I, Davis EL, Ricks KD, Koide RT (2016) New evidence for broad trophic status of leaf endophytic fungi of Quercus gambelii. Fungal Ecol 22:2–9Google Scholar
  124. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedGoogle Scholar
  125. Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, Pennanen T (2016) Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing. Appl Environ Microbiol 82:7217–7226PubMedPubMedCentralGoogle Scholar
  126. Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttilä AM (2010) Root endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134Google Scholar
  127. Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107Google Scholar
  128. Tejesvi MV, Picart P, Kajula M, Hautajärvi H, Ruddock L, Kristensen HH, Tossi A, Sahl HG, Ek S, Mattila S, Pirttilä AM (2016) Identification of antibacterial peptides from endophytic microbiome. Appl Microbiol Biotechnol 100:9283–9293PubMedGoogle Scholar
  129. Ting AS, Akinsanya MA, Goh JK, Lim SP (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genomics Data 6:159–163PubMedPubMedCentralGoogle Scholar
  130. Travadon R, Lawrence DP, Rooney-Latham S, Gubler WD, Wilcox WF, Rolshausen PE, Baumgartner K (2015) Cadophora species associated with wood-decay of grapevine in North America. Fungal Biol 119:53–66PubMedGoogle Scholar
  131. Varanda CMR, Oliveira M, Materatski P, Landum M, Clara MIE, Felix MR (2016) Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol 120:1525–1536PubMedGoogle Scholar
  132. Vilgalys R, Hester M (1990) Rapid genetic identification and maping of enzimatically amplified ribosomal DNA from several Crytococcus species. J Bacteriol 172:4238–4246PubMedPubMedCentralGoogle Scholar
  133. Vivas M, Kemler M, Slippers B (2015) Environmental maternal effects on the early phenotype and resistance Eucalyptus grandis and the structuring of fungal endophytic communities. In: 5th International Workshop on the Genetics of Host-Parasite Interactions in Forestry, At OrleansGoogle Scholar
  134. White TJ, Bruns T, Lee J, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  135. Wicaksono W, Jones EE, Monk J, Ridgway HJ (2015) Exploring factors that influence the composition of endophyte communities in Leptospermum scoparium (mānuka). In: 36th new phytologist symposium cell biology at the plant–microbe interface, At Munich, GermanyGoogle Scholar
  136. Yadav M, Yadav A, Kumar S, Yadav JP (2016) Spatial and seasonal influences on culturable endophytic mycobiota associated with different tissues of Eugenia jambolana Lam. and their antibacterial activity against MDR strains. BMC Microbiol 16:44–56PubMedPubMedCentralGoogle Scholar
  137. Zapka C, Leff J, Henley J, Tittl J, De Nardo E, Butler M, Griggs R, Fierer N, Edmonds-Wilson S (2017) Comparison of standard culture-based method to culture-independent method for evaluation of hygiene effects on the hand microbiome. mBio 8:e00093-17PubMedPubMedCentralGoogle Scholar
  138. Zhou SL, Yan SZ, Liu QS, Chen SL (2015) Diversity of endophytic fungi associated with the foliar tissue of a hemi-parasitic plant Macrosolen cochinchinensis. Curr Microbiol 70:58–66PubMedGoogle Scholar

Copyright information

© School of Science 2018

Authors and Affiliations

  • Asha J. Dissanayake
    • 1
    • 2
    • 3
  • Witoon Purahong
    • 4
  • Tesfaye Wubet
    • 4
    • 6
  • Kevin D. Hyde
    • 3
  • Wei Zhang
    • 1
    • 2
  • Haiying Xu
    • 5
  • Guojun Zhang
    • 5
  • Chunyuan Fu
    • 1
    • 2
  • Mei Liu
    • 1
    • 2
  • Qikai Xing
    • 1
    • 2
  • Xinghong Li
    • 1
    • 2
  • Jiye Yan
    • 1
    • 2
  1. 1.Institute of Plant and Environment ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  2. 2.Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  3. 3.Center of Excellence in Fungal ResearchMae Fah Luang UniversityChiang RaiThailand
  4. 4.Department of Soil EcologyUFZ-Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
  5. 5.Beijing Academy of Forestry and Pomology SciencesBeijingChina
  6. 6.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany

Personalised recommendations