Advertisement

Fungal Diversity

, Volume 70, Issue 1, pp 149–187 | Cite as

Bioluminescent fungi from Peninsular Malaysia—a taxonomic and phylogenetic overview

  • Audrey L. C. Chew
  • Dennis E. Desjardin
  • Yee-Shin Tan
  • Md Yusoff Musa
  • Vikineswary Sabaratnam
Article

Abstract

Fifteen bioluminescent fungi recently collected from Peninsular Malaysia are analysed herein. The phylogeny of the Malaysian bioluminescent fungi and closely related taxa were evaluated with molecular data from the nuclear ribosomal large subunit (LSU), RNA polymerase 2 second largest subunit (RPB2) and internal transcribed spacers (ITS) gene regions. DNA sequences data support the circumscription of species based on the morphological species concept, but was unable to fully support the current sectional delimitation of genus Mycena. Of the 15 taxa analysed here, four are novel species described herein, viz. Mycena gombakensis, M. nocticaelum, M. coralliformis and Panellus luxfilamentus; while four taxa of Mycena sect. Calodontes were recently described as new. One species (M. noctilucens) represents a new distribution record to Peninsular Malaysia, and six species (Neonothopanus nambi, Filoboletus manipularis, P. luminescens, Roridomyces pruinosoviscidus, M. chlorophos and M. illuminans) have been previously reported. Roridomyces pruinosoviscidus is accepted as a new combination based on morphological and phylogenetic data. Culture morphology data indicate its potential for taxon delimitation as axenic cultures of each species produced unique and distinguishable characteristics. Comprehensive descriptions, illustrations and photographs are provided on basidiome and culture morphology. A key to aid in species identification, comparisons with allied species and data on basidiome and mycelium luminescence are also provided. This study gives the first report on mycelial luminescence for M. noctilucens, P. luminescens, R. pruinosoviscidus as well as all new species described herein. The reports in this study bring the total known luminescent fungi worldwide to 81 species.

Keywords

Basidiomycete Biodiversity Culture morphology Filoboletus Mycena Neonothopanus Panellus Phylogeny Roridomyces Systematics Taxonomy 

Notes

Acknowledgements

The authors thank Mr. Foong Hoe Yinn and Mr. Roslee Halip for assistance with fieldwork and photography. The first author is also grateful to Ms. Amira Peli, Mr. Tan Wee Cheat, Ms. Azliza Mad Anuar, Mr. Wong Jing Yang, Ms. Nurulhuda Mahamud, Ms. Santhi Velayutham, Mr. Khairul Nizam Jamaluddin, Mr. Mohd Zaidee Mamat, Mr. Mohd Farizwan Mohd Ismail, Mr. Mohd Fauzi Abdul Hamid, Mr. Ahmad Suhaimi Awang, Mr. Khairul Nizam Ishak and Mr. Kamaruddin Md Isa for assistance and company on numerous field trips. This study was supported by grants PS285/2009B, PV088/2011B and J-21001-76536 by University of Malaya.

Supplementary material

13225_2014_302_MOESM1_ESM.pdf (27 kb)
ESM 1 (PDF 27 kb)

References

  1. Airth RL, Foerster GE (1960) Some aspects of fungal bioluminescence. J Cell Comp Physiol 56:173–182PubMedCrossRefGoogle Scholar
  2. Aravindakshan DM, Kumar TKA, Manimohan P (2012) A new bioluminescent species of Mycena sect. Exornatae from Kerala State, India. Mycosphere 3(5):556–561CrossRefGoogle Scholar
  3. Boidin J, Lanquetin P (1983) Basidiomycetes Aphyllophorales epitheloides etalés. Mycotaxon 16:461–499Google Scholar
  4. Buchan A, Newell SY, Moreta JIL, Moran MA (2002) Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a Southeastern U.S. Salt Marsh. Microb Ecol 43:329–340PubMedCrossRefGoogle Scholar
  5. Burdsall HH, Miller OK Jr (1975) A reevaluation of Panellus and Dictyopanus (Agaricales). Beih Nova Hedwigia 51:79–91Google Scholar
  6. Capelari M, Desjardin DE, Perry BA, Asai T, Stevani CV (2011) Neonothopanus gardneri: a new combination for a bioluminescent agaric from Brazil. Mycologia 103:1433–1440PubMedCrossRefGoogle Scholar
  7. Chew ALC, Tan YS, Desjadin DE, Musa MY, Sabaratnam V (2013) Taxonomic and phylogenetic re-evaluation of Mycena illuminans. Mycologia 105:1325–1335PubMedCrossRefGoogle Scholar
  8. Chew ALC, Tan YS, Desjadin DE, Musa MY, Sabaratnam V (2014) Four new bioluminescent taxa of Mycena sect. Calodontes from Peninsular Malaysia, MycologiaGoogle Scholar
  9. Choi YW, Hyde KD, Ho WH (1999) Single spore isolation of fungi. Fungal Divers 3:29–38Google Scholar
  10. Corner EJH (1950) Descriptions of two luminous tropical agarics (Dictyopanus and Mycena). Mycologia 42:423–431CrossRefGoogle Scholar
  11. Corner EJH (1954) Further descriptions of luminous agarics. Trans Br Mycol Soc 37:256–271CrossRefGoogle Scholar
  12. Corner EJH (1981) The Agaric Genera Lentinus, Panus, and Pleurotus. Nova Hedwigia, GermanyGoogle Scholar
  13. Corner EJH (1986) The agaric genus Panellus Karst. (including Dictyopanus Pat.) in Malaysia. Gard Bull Singapore 39:103–147Google Scholar
  14. Corner EJH (1994) Agarics in Malesia. I. Tricholomatoid. II. Mycenoid. Beih Nova Hedwigia 109:165–271Google Scholar
  15. Deheyn DD, Latz MI (2007) Bioluminescence characteristics of a tropical terrestrial fungus (basidiomycetes). Luminescence 22:462–467PubMedCrossRefGoogle Scholar
  16. Desjardin DE (1990) Culture morphology of Marasmius species. Sydowia 42:17–87Google Scholar
  17. Desjardin DE, Boonpratuang T, Hywel-Jones N (2003) New spinose species of Mycena in sections Basipedes and Polyadelphia from Thailand. Fungal Divers 12:7–17Google Scholar
  18. Desjardin DE, Oliveira AG, Stevani CV (2008) Fungi bioluminescence revisited. Photochem Photobiol Sci 7:170–182PubMedCrossRefGoogle Scholar
  19. Desjardin DE, Perry BA, Lodge DJ, Stevani CV, Nagasawa E (2010) Luminescent Mycena: new and noteworthy species. Mycologia 102:459–477PubMedCrossRefGoogle Scholar
  20. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the Bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  21. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity of basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  22. Harkin JM, Obst JR (1973) Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Experentia 39:381–387CrossRefGoogle Scholar
  23. Harvey EN (1952) Bioluminescence. Academic, New YorkGoogle Scholar
  24. Herring PJ (1994) Luminous fungi. Mycologist 8:181–183CrossRefGoogle Scholar
  25. Huelsenbeck JP, Ronquist F (2005) Bayesian analysis of molecular evolution using MrBayes. In: Nielsen R (ed) Statistical methods in molecular evolution. Springer Verlag, New York, pp 183–232CrossRefGoogle Scholar
  26. Kobayasi Y (1951) Contributions to the luminous fungi from Japan. J Hattori Bot Lab 5:1–6Google Scholar
  27. Kornerup A, Wanscher JH (1963) Methuen handbook of colour. Methuen & Co Ltd., LondonGoogle Scholar
  28. Largent D, Johnson D, Watling R (1977) How to identify mushrooms to genus III: microscopic features. Eureka Printing Co. Inc., CaliforniaGoogle Scholar
  29. Largent DL (1986) How to identify mushrooms to genus I: macroscopic features. Eureka Printing Co. Inc., CaliforniaGoogle Scholar
  30. Lee SS, Alias SA, Jones EGB, Zainuddin N, Chan HT (2012) Checklist of fungi of Malaysia. Swan Printing Sdn. Bhd, MalaysiaGoogle Scholar
  31. Liu KL, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G (2012) Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl Environ Microbiol 78:1523–1533PubMedCentralPubMedCrossRefGoogle Scholar
  32. Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808PubMedCrossRefGoogle Scholar
  33. Maas Geesteranus RA (1992) Mycenas of the Northern Hemisphere. II. Conspectus of the Mycenas of the Northern Hemispere. Verh Kon Ned Akad Wetensch, Afd Natuurk, Tweede Reeks 90:1–493Google Scholar
  34. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org
  35. Marr CD (1986) The taxonomic potential of laccase and tyrosinase spot tests. Mycologia 78:169–184CrossRefGoogle Scholar
  36. Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Mol Phylogenet Evol 35:1–20PubMedCrossRefGoogle Scholar
  37. Matheny PB, Curtis JM, Hofstetter V, Aime MC, Moncalvo JM, Ge ZW, Yang ZL, Slot JC, Ammirati JF, Baroni TJ, Bougher NL, Hughes KW, Lodge DJ, Kerrigan RW, Seidl MT, Aanen DK, DeNitis M, Daniele GM, Desjardin DE, Kropp BR, Norvell LL, Parker A, Vellinga EC, Vilgalys R, Hibbett DS (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–995PubMedCrossRefGoogle Scholar
  38. Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot 89(4):688–698PubMedCrossRefGoogle Scholar
  39. Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E, Langer G, McLaughlin DJ, Wilson AW, Frøslev T, Ge ZW, Kerrigan RW, Slot JC, Yang ZL, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS (2007) Contributions of rpb2 and tef1 to phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43:430–451PubMedCrossRefGoogle Scholar
  40. Moncalvo J-M, Vilgalys R, Redhead SA, Johnson JE, James TY, Aime MC, Hofstetter V, Verduin SJW, Larsson E, Baroni TJ, Thorn RG, Jacobsson S, Clemencon H, Miller OK Jr (2002) One hundred and seventeen clades of euagarics. Mol Phylogenet Evol 23:357–400PubMedCrossRefGoogle Scholar
  41. Nobles MK (1948) Studies in forest pathology. VI. Identification of cultures of wood-rotting fungi. Can J Res 26:281–431PubMedCrossRefGoogle Scholar
  42. Nobles MK (1965) Identification of cultures of wood-inhabiting Hymenomycetes. Can J Bot 43:1097–1139CrossRefGoogle Scholar
  43. Oliveira AG, Desjardin DE, Perry BA, Stevani CV (2012) Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochem Photobiol Sci 11:848–852CrossRefGoogle Scholar
  44. Pegler DN (1983) Agaric Flora of the Lesser Antilles (Kew Bulletin Additional Series IX). HMSO, LondonGoogle Scholar
  45. Pegler DN (1986) Agaric Flora of Sri Lanka (Kew Bulletin Additional Series XII). Royal Botanic Gardens, KewGoogle Scholar
  46. Petersen RH, Krisai-Greilhuber I (1999) Type specimen studies in Pleurotus. Persoonia 17:201–219Google Scholar
  47. Petersen RH, Hughes KW, Lickey EB, Kovalenko AE, Morozova OV, Psurtseva NV (2008) A new genus, Cruentomycena, with Mycena viscidocruenta as type species. Mycotaxon 105:119–136Google Scholar
  48. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818PubMedCrossRefGoogle Scholar
  49. Rexer K-H (1994) Die Gatung Mycena s.l., Studien zu ihrer anatomie, morphologie und systematik. Dissertation, Universität TübingenGoogle Scholar
  50. Robich G (2003) Mycena d’Europa. A.M.B, Fondazione, FondazioneGoogle Scholar
  51. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574PubMedCrossRefGoogle Scholar
  52. Shih YS, Chen CY, Lin WW, Kao HW (2013) Mycena kentingensis, a new species of luminous mushroom in Taiwan, with reference to its culture method. Mycol Prog. doi: 10.1007/s11557-013-0939-x Google Scholar
  53. Singer R (1986) Agaricales in modern taxonomy. Koeltz Scientific Books, GermanyGoogle Scholar
  54. Stalpers JA (1978) Identification of wood-inhabiting fungi in pure culture. Stud Mycol 16:1–248Google Scholar
  55. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4. Sinauer Associates, SunderlandGoogle Scholar
  56. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  57. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedCentralPubMedGoogle Scholar
  58. Vydryakova GA, Van DT, Shoukouhi P, Psurtseva NV, Bissett J (2012) Intergenomic and intragenomic ITS sequence heterogeneity in Neonothopanus nambi (Agaricales) from Vietnam. Mycology 3(2):88–99Google Scholar
  59. Wassink EC (1978) Luminescence in fungi. In: Herring PJ (ed) Bioluminescence in action. Academic, London, pp 171–197Google Scholar
  60. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322CrossRefGoogle Scholar

Copyright information

© School of Science 2014

Authors and Affiliations

  • Audrey L. C. Chew
    • 1
    • 2
  • Dennis E. Desjardin
    • 1
    • 3
  • Yee-Shin Tan
    • 1
    • 2
  • Md Yusoff Musa
    • 1
    • 2
  • Vikineswary Sabaratnam
    • 1
    • 2
  1. 1.Mushroom Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of BiologySan Francisco State UniversitySan FranciscoUSA

Personalised recommendations