Fungal Diversity

, Volume 69, Issue 1, pp 93–115 | Cite as

Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae

  • Gang Wu
  • Bang Feng
  • Jianping Xu
  • Xue-Tai Zhu
  • Yan-Chun Li
  • Nian-Kai Zeng
  • Md. Iqbal Hosen
  • Zhu L. Yang
Article

Abstract

Mushrooms in the basidiomycete family Boletaceae are ecologically and economically very important. However, due to the morphological complexity and the limited phylogenetic information on the various species and genera of this fungal family, our understanding of its systematics and evolution remains rudimentary. In this study, DNA sequences of four genes (nrLSU, tef1-α, rpb1, and rpb2) were newly obtained from ca. 200 representative specimens of Boletaceae. Our phylogenetic analyses revealed seven major clades at the subfamily level, namely Austroboletoideae, Boletoideae, Chalciporoideae, Leccinoideae, Xerocomoideae, Zangioideae, and the Pulveroboletus Group. In addition, 59 genus-level clades were identified, of which 22 were uncovered for the first time. These 22 clades were mainly placed in Boletoideae and the Pulveroboletus Group. The results further indicated that the characters frequently used in the morphology-based taxonomy of Boletaceae, such as basidiospore ornamentation, the form of the basidioma, and the stuffed pores each had multiple origins within the family, suggesting that the use of such features for high-level classification of Boletaceae should be de-emphasized and combined with other characters.

Keywords

Boletales Chemotaxonomy Convergent evolution Morphological characters Multi-gene analyses New subfamilies 

Supplementary material

13225_2014_283_MOESM1_ESM.xls (86 kb)
Table S1(XLS 85 kb)

References

  1. Andary C, Cosson L, Bourrier M, Wylde R, Heitz A (1992) Chemotaxonomy of boletes in Luridi section [Luridus and Satanas sub-sections, 2-amino-4-hydroxypentanoic acid]. Cryptog Mycol 13:103–114Google Scholar
  2. Becerra AG, Zak MR (2011) The ectomycorrhizal symbiosis in South America: morphology, colonization, and diversity. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae. Springer, Berlin, pp 19–41CrossRefGoogle Scholar
  3. Besl H, Bresinsky A (1997) Chemosystematics of Suillaceae and Gomphidiaceae (suborder Suillineae). Plant Syst Evol 206:223–242CrossRefGoogle Scholar
  4. Binder M, Besl H (2000) 28S rDNA sequence data and chemotaxonomical analyses on the generic concept of Leccinum (Boletales). In: Associazone Micologica Bresadola (ed) Micologia 2000. Grafica Sette, Brescia, pp 75–86Google Scholar
  5. Binder M, Bresinsky A (2002a) Derivation of a polymorphic lineage of Gasteromycetes from boletoid ancestors. Mycologia 94:85–98PubMedCrossRefGoogle Scholar
  6. Binder M, Bresinsky A (2002b) Retiboletus, a new genus for a species-complex in the Boletaceae producing retipolides. Feddes Repert 113:30–40CrossRefGoogle Scholar
  7. Binder M, Hibbett DS (2002) Higher-level phylogenetic relationships of homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. Mol Phylogenet Evol 22:76–90PubMedCrossRefGoogle Scholar
  8. Binder M, Hibbett DS (2007) Molecular systematics and biological diversification of Boletales. Mycologia 98:971–981CrossRefGoogle Scholar
  9. Bresinsky A, Besl H (2003) Schlüssel zur Gattungsbestimmung der Blätter-, Leisten-und Rörhenpilze mit Literaturhinweisen zur Artbestimmung. Regensb Mykol Schriftenr 11:5–236Google Scholar
  10. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  11. Corner EJH (1972) Boletus in Malaysia. Singapore Botanic Gardens, Singapore, 263 pGoogle Scholar
  12. den Bakker HC, Noordeloos M (2005) A revision of European species of Leccinum Gray and notes on extralimital species. Persoonia 18:511–587Google Scholar
  13. den Bakker HC, Zuccarello GC, Kuyper TW, Noordeloos ME (2004) Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytol 163:201–215CrossRefGoogle Scholar
  14. Dentinger BT, Ammirati JF, Both EE, Desjardin DE, Halling RE, Henkel TW, Moreau PA, Nagasawa E, Soytong K, Taylor AF, Watling R, Moncalvo JM, McLaughlin DJ (2010) Molecular phylogenetics of porcini mushrooms (Boletus section Boletus). Mol Phylogenet Evol 57:1276–1292PubMedCrossRefGoogle Scholar
  15. Desjardin DE, Binder M, Roekring S, Flegel T (2009) Spongiforma, a new genus of gastroid boletes from Thailand. Fungal Divers 37:1–8Google Scholar
  16. Desjardin DE, Peay KG, Bruns TD (2011) Spongiforma squarepantsii, a new species of gasteroid bolete from Borneo. Mycologia 103:1119–1123PubMedCrossRefGoogle Scholar
  17. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  18. Drehmel D, James T, Vilgalys R (2008) Molecular phylogeny and biodiversity of the boletes. Fungi 1:17–23Google Scholar
  19. Feng B, Xu J, Wu G, Hosen MI, Zeng NK, Li YC, Tolgor B, Kost GW, Yang ZL (2012) DNA sequence analyses reveal abundant diversity, endemism and evidence for Asian origin of the porcini mushrooms. PLoS One 7:e37567PubMedCentralPubMedCrossRefGoogle Scholar
  20. Gilbert EJ (1931) Les bolets. Librairie E. Le François, Paris, 254 pGoogle Scholar
  21. Gill M (2003) Pigments of fungi (Macromycetes). Nat Prod Rep 20:615–639PubMedCrossRefGoogle Scholar
  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser: 95–98Google Scholar
  23. Halling RE, Nuhn M, Fechner NA, Osmundson TW, Soytong K, Arora D, Hibbett DS, Binder M (2012a) Sutorius: a new genus for Boletus eximius. Mycologia 104:951–961PubMedCrossRefGoogle Scholar
  24. Halling RE, Nuhn M, Osmundson T, Fechner N, Trappe JM, Soytong K, Arora D, Hibbett DS, Binder M (2012b) Affinities of the Boletus chromapes group to Royoungia and the description of two new genera, Harrya and Australopilus. Aust Syst Bot 25:418–431CrossRefGoogle Scholar
  25. Halling RE, Osmundson TW, Neves MA (2008) Pacific boletes: implications for biogeographic relationships. Mycol Res 112:437–447PubMedCrossRefGoogle Scholar
  26. Hellwig V, Dasenbrock J, Gräf C, Kahner L, Schumann S, Steglich W (2002) Calopins and Cyclocalopins-Bitter principles from Boletus calopus and related mushrooms. Eur J Org Chem 2002:2895–2904CrossRefGoogle Scholar
  27. Henkel TW, Aime MC, Chin MM, Miller SL, Vilgalys R, Smith ME (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodivers Conserv 21:2195–2220CrossRefGoogle Scholar
  28. Hibbett DS (2007) After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century. Mycol Res 111:1001–1018PubMedCrossRefGoogle Scholar
  29. Hibbett DS, Binder M (2002) Evolution of complex fruiting-body morphologies in homobasidiomycetes. Proc R Soc Lond B 269:1963–1969CrossRefGoogle Scholar
  30. Høiland K (1987) A new approach to the phylogeny of the order Boletales (Basidiomycotina). Nord J Bot 7:705–718CrossRefGoogle Scholar
  31. Horak E (2011) Revision of Malaysian species of Boletales s.l. (Basidiomycota) described by EJH Corner (1972, 1974). Malay For Rec 51:1–283Google Scholar
  32. Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan W, Domínguez LS, Nouhra ER, Geml J, Giachini AJ, Kenney SR (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98:949–959PubMedCrossRefGoogle Scholar
  33. Hosen MI, Feng B, Wu G, Zhu XT, Li YC, Yang ZL (2013) Borofutus, a new genus of Boletaceae from tropical Asia: phylogeny, morphology and taxonomy. Fungal Divers 58:215–226CrossRefGoogle Scholar
  34. Husbands DR, Henkel TW, Bonito G, Vilgalys R, Smith ME (2013) New species of Xerocomus (Boletales) from the Guiana Shield, with notes on their mycorrhizal status and fruiting occurrence. Mycologia 105:422–435PubMedCrossRefGoogle Scholar
  35. Justo A, Morgenstern I, Hallen-Adams HE, Hibbett DS (2010) Convergent evolution of sequestrate forms in Amanita under Mediterranean climate conditions. Mycologia 102:675–688PubMedCrossRefGoogle Scholar
  36. Katoh K, Misawa K, Ki K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kirk PM, Cannon PF, Minter D, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CAB International, Wallingford, 771 pGoogle Scholar
  38. Kretz O, Creppy E, Dirheimer G (1991) Characterization of bolesatine, a toxic protein from the mushroom Boletus satanas Lenz and it’s effects on kidney cells. Toxicology 66:213–224PubMedCrossRefGoogle Scholar
  39. Lebel T, Orihara T, Maekawa N (2012) The sequestrate genus Rossbeevera T. Lebel & Orihara gen. nov. (Boletaceae) from Australasia and Japan: new species and new combinations. Fungal Divers 52:49–71CrossRefGoogle Scholar
  40. Li TH, Song B (2000) Chinese boletes: a comparison of boreal and tropical elements. In: Walley AJS (ed) Tropical mycology 2000, the millenium meeting on tropical mycology (main meeting 2000). British Mycological Society & Liverpool John Moores University, Liverpool, pp 1–9Google Scholar
  41. Li YC, Feng B, Yang ZL (2011) Zangia, a new genus of Boletaceae supported by molecular and morphological evidence. Fungal Divers 49:125–143CrossRefGoogle Scholar
  42. Li YC, Ortiz-Santana B, Zeng NK, Feng B, Yang ZL (2014) Molecular phylogeny and taxonomy of the genus Veloporphyrellus. Mycologia (in press)Google Scholar
  43. Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E, Langer G, McLaughlin DJ, Wilson AW, Froslev T, Ge ZW, Kerrigan RW, Slot JC, Yang ZL, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43:430–451PubMedCrossRefGoogle Scholar
  44. Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot 89:688–698PubMedCrossRefGoogle Scholar
  45. Matsuura M, Yamada M, Saikawa Y, Miyairi K, Okuno T, Konno K, Ji U, Hashimoto K, Nakata M (2007) Bolevenine, a toxic protein from the Japanese toadstool Boletus venenatus. Phytochemistry 68:893–898PubMedCrossRefGoogle Scholar
  46. McNabb R (1967) The Strobilomycetaceae of New Zealand. N Z J Bot 5:532–547CrossRefGoogle Scholar
  47. Mikheyev AS, Mueller UG, Abbot P (2006) Cryptic sex and many-to-one colevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci 103:10702–10706PubMedCentralPubMedCrossRefGoogle Scholar
  48. Nelsen SF (2010) Bluing components and other pigments of boletes. Fungi 3:11–14Google Scholar
  49. Nuhn ME, Binder M, Taylor AF, Halling RE, Hibbett DS (2013) Phylogenetic overview of the Boletineae. Fungal Biol 117:479–511PubMedCrossRefGoogle Scholar
  50. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. (http://www.abc.se/~nylander/mrmodeltest2/mrmodeltest2.html)
  51. Orihara T, Sawada F, Ikeda S, Yamato M, Tanaka C, Shimomura N, Hashiya M, Iwase K (2010) Taxonomic reconsideration of a sequestrate fungus, Octaviania columellifera, with the proposal of a new genus, Heliogaster, and its phylogenetic relationships in the Boletales. Mycologia 102:108–121PubMedCrossRefGoogle Scholar
  52. Orihara T, Smith M, Shimomura N, Iwase K, Maekawa N (2012) Diversity and systematics of the sequestrate genus Octaviania in Japan: two new subgenera and eleven new species. Persoonia 28:85–112PubMedCentralPubMedCrossRefGoogle Scholar
  53. Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53:673–684PubMedCrossRefGoogle Scholar
  54. Peck CH (1872) Report of the botanist (1870). Ann Rep NY State Mus 24:41–108Google Scholar
  55. Pegler D, Young T (1981) A natural arrangement of the Boletales, with reference to spore morphology. Trans Br Mycol Soc 76:103–146CrossRefGoogle Scholar
  56. Raddi GF (1806) Delle specie nuove di Funghi ritrovatanei contorni di Firenze. Mém Soc Ital Modena 13:345–362Google Scholar
  57. Reijnders A (2000) A morphogenetic analysis of the basic characters of the gasteromycetes and their relation to other basidiomycetes. Mycol Res 104:900–910CrossRefGoogle Scholar
  58. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  59. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  60. Sato H, Yumoto T, Murakami N (2007) Cryptic species and host specificity in the ectomycorrhizal genus Strobilomyces (Strobilomycetaceae). Am J Bot 94:1630–1641PubMedCrossRefGoogle Scholar
  61. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9(s1):83–89PubMedCrossRefGoogle Scholar
  62. Singer R (1945) The Boletineae of Florida with notes on extralimital species. I. Strobilomycetaceae. Farlowia 2:97–141Google Scholar
  63. Singer R (1947) The Boletineae of Florida with notes on extralimital species III. The Boletoideae of Florida. Am Midl Nat 37:1–135CrossRefGoogle Scholar
  64. Singer R (1986) The Agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein, 903 pGoogle Scholar
  65. Smith AH, Thiers HD (1971) The boletes of Michigan. University of Michigan Press, Ann Arbor, 428 pGoogle Scholar
  66. Smith ME, Pfister DH (2009) Tuberculate ectomycorrhizae of angiosperms: The interaction between Boletus rubropunctus (Boletaceae) and Quercus species (Fagaceae) in the United States and Mexico. Am J Bot 96:1665–1675PubMedCrossRefGoogle Scholar
  67. Smith SA, Dunn CW (2008) Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24:715–716PubMedCrossRefGoogle Scholar
  68. Snell WH (1941) The genera of the Boletaceae. Mycologia 33:415–423CrossRefGoogle Scholar
  69. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  70. Steffan B, Steglich W (1984) Pigments from the cap cuticle of the Bay Boletus (Xerocomus badius). Angew Chem Int Ed Engl 23:445–447CrossRefGoogle Scholar
  71. Steglich W, Esser F (1973) Fungi: l-3, 4-Dihydroxy-phenylalanin aus Strobilomyces floccopus. Phytochemistry 12:1817CrossRefGoogle Scholar
  72. Sterner O, Steffan B, Steglich W (1987) Novel azepine derivatives from the pungent mushroom Chalciporus piperatus. Tetrahedron 43:1075–1082CrossRefGoogle Scholar
  73. Sun Y, Yuan W, Liu L, Zhang L, Shi G, Wang Q (2012) An outbreak of gastroenteritis caused by poisonous Boletus mushroom in Sichuan, China, 2012. Zhonghua Liuxingbingxue Zazhi 33:1261–1264PubMedGoogle Scholar
  74. Šutara J (2008) Xerocomus s.l. in the light of the present state of knowledge. Czech Mycol 60:29–62Google Scholar
  75. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  76. Thoen D, Bâ AM (1989) Ectomycorrhizas and putative ecto‐mycorrhizal fungi of Afzelia africana Sm and Uapaca guineensis Müll. Arg. in southern Senegal. New Phytol 113:549–559CrossRefGoogle Scholar
  77. Trappe JM, Castellano MA, Halling RE, Osmundson TW, Binder M, Fechner N, Malajczuk N (2013) Australasian sequestrate fungi. 18: Solioccasus polychromus gen. & sp. nov., a richly colored, tropical to subtropical, hypogeous fungus. Mycologia. doi:10.3852/12-046 Google Scholar
  78. Watling R, Li T (1999) Australian boletes: a preliminary survey. Royal Botanic Garden, Edinburgh, 71 pGoogle Scholar
  79. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363PubMedCrossRefGoogle Scholar
  80. Wilson AW, Binder M, Hibbett DS (2011) Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis. Evolution 65:1305–1322PubMedCrossRefGoogle Scholar
  81. Wilson AW, Binder M, Hibbett DS (2012) Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol 194:1079–1095PubMedCrossRefGoogle Scholar
  82. Wolfe CB (1979) Austroboletus and Tylopilus subgenus Porphyrellus, with emphasis on North American taxa. J. Cramer, Germany, 148 pGoogle Scholar
  83. Yang ZL (2011) Molecular techniques revolutionize knowledge of basidiomycete evolution. Fungal Divers 50:47–58CrossRefGoogle Scholar
  84. Yang ZL, Trappe JM, Binder M, Sanmee R, Lumyong P, Lumyong S (2006) The sequestrate genus Rhodactina (Basidiomycota, Boletales) in northern Thailand. Mycotaxon 96:133–140Google Scholar
  85. Zang M (2006) Flora fungorum sinicorum: Boletaceae (I). Science Press, Beijing, (in Chinese) 215 pGoogle Scholar
  86. Zeng NK, Cai Q, Yang ZL (2012) Corneroboletus, a new genus to accommodate the southeast Asian Boletus indecorus. Mycologia 104:1420–1432PubMedCrossRefGoogle Scholar
  87. Zeng NK, Tang LP, Li YC, Tolgor B, Zhu XT, Zhao Q, Yang ZL (2013) The genus Phylloporus (Boletaceae, Boletales) from China: morphological and multilocus DNA sequence analyses. Fungal Divers 58:73–101CrossRefGoogle Scholar
  88. Zhou ZY, Liu JK (2010) Pigments of fungi (macromycetes). Nat Prod Rep 27:1531–1570PubMedCrossRefGoogle Scholar

Copyright information

© Mushroom Research Foundation 2014

Authors and Affiliations

  • Gang Wu
    • 1
    • 2
  • Bang Feng
    • 1
  • Jianping Xu
    • 3
  • Xue-Tai Zhu
    • 1
    • 2
  • Yan-Chun Li
    • 1
  • Nian-Kai Zeng
    • 1
  • Md. Iqbal Hosen
    • 1
    • 2
  • Zhu L. Yang
    • 1
  1. 1.Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations