Advertisement

Fungal Diversity

, Volume 67, Issue 1, pp 143–156 | Cite as

The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal

  • A. Alves
  • B. T. Linaldeddu
  • A. Deidda
  • B. Scanu
  • A. J. L. Phillips
Article

Abstract

Studies on the taxonomy and phylogeny of Diplodia have been hampered by the lack of an ex-type culture linked to the holotype of D. mutila, which is the type of the genus. In this study a large collection of Diplodia strains, obtained from ash and other woody hosts showing V-shaped cankers and branch dieback, were identified based on morphological characters and DNA sequence data from ITS and EF1-α loci. Results of combined morphological and phylogenetic analyses showed that the Fraxinus isolates from Italy, the Netherlands, Portugal and Spain belong to three distinct species namely Diplodia fraxini, Diplodia mutila and Diplodia subglobosa sp. nov. An epitype was designated for Diplodia mutila, with associated ex-epitype cultures. The name D. fraxini is re-instated and a neotype designated. Two species, Diplodia seriata and Diplodia pseudoseriata were reported for the first time on Fraxinus spp.

Keywords

Botryosphaeriaceae Epitype Neotype Phylogeny Systematics Taxonomy 

Notes

Acknowledgments

We thank Dr Shaun Pennycook, Landcare Research, New Zealand for correcting the nomenclators for D. fraxini and D. mutila. Artur Alves was supported by the programme Ciência 2008, co-funded by the Human Potential Operational Programme (National Strategic Reference Framework 2007–2013) and the European Social Fund (EU). Part of this work was financed by Fundação para a Ciência e a Tecnologia (Portugal) through grant PEst-OE/BIA/UI0457/2011. Antonio Deidda gratefully acknowledges Sardinia Regional Government for the financial support of his PhD scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007–2013—Axis IV Human Resources, Objective l.3, Line of Activity l.3.1.)

References

  1. Alves A, Correia A, Luque J, Phillips AJL (2004) Botryosphaeria corticola sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph Diplodia mutila. Mycologia 96:598–613PubMedCrossRefGoogle Scholar
  2. Alves A, Correia A, Phillips AJL (2006) Multigene genealogies and morphological data support Diplodia cupressi sp. nov., previously recognized as Diplodia pinea f. sp. cupressi as a distinct species. Fungal Divers 23:1–15Google Scholar
  3. Alves A, Crous PW, Correia A, Phillips AJL (2008) Morphological and molecular data reveal cryptic species in Lasiodiplodia theobromae. Fungal Divers 28:1–13Google Scholar
  4. Bakys R, Vasaitis R, Barklund P, Thomsen IM, Stenlid J (2009) Occurrence and pathogenicity of fungi in necrotic and non-symptomatic shoots of declining common ash (Fraxinus excelsior) in Sweden. Eur J For Res 128:51–60CrossRefGoogle Scholar
  5. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  6. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22Google Scholar
  7. Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Phillips AJL, Alves A, Burgess T, Barber P, Groenewald JZ (2006) Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235–253PubMedCrossRefPubMedCentralGoogle Scholar
  8. Damm U, Crous PW, Fourie PH (2007) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99:664–680PubMedCrossRefGoogle Scholar
  9. de Wet J, Wingfield MJ, Coutinho T, Wingfield B (2002) Characterization of the “C” morphotype of the pine pathogen Sphaeropsis sapinea. For Ecol Manag 161:181–188CrossRefGoogle Scholar
  10. de Wet J, Burgess T, Slippers B, Preisig O, Wingfield BD, Wingfield MJ (2003) Multiple gene genealogies and microsatellite markers reflect relationships between morphotypes of Sphaeropsis sapinea and distinguish a new species of Diplodia. Mycol Res 107:557–566PubMedCrossRefGoogle Scholar
  11. Dingley JM (1969) Records of plant diseases in New Zealand. New Zealand Department of Scientific and Industrial Research, Bulletin 192Google Scholar
  12. Farr DF, Rossman AY (2013) Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved December 2, 2013, from http://nt.ars-grin.gov/fungaldatabases/
  13. Fries EM (1823) Systema mycologicum. 2:276–620Google Scholar
  14. Fries EM (1849) Summa vegetabilium Scandinaviae. 1–572Google Scholar
  15. Gramaje D, Agustí-Brisach C, Pérez-Sierra A, Moralejo E, Olmo D, Mostert L, Damm U, Armengol J (2012) Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). Persoonia 28:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  16. Granata G, Faedda R, Sidoti A (2011) First report of canker disease caused by Diplodia olivarum on carob tree in Italy. Plant Dis 95:776CrossRefGoogle Scholar
  17. Gure A, Slippers B, Stenlid J (2005) Seed-borne Botryosphaeria spp. from native Prunus and Podocarpus trees in Ethiopia, with a description of the anamorph Diplodia rosulata sp. nov. Mycol Res 109:1005–1014PubMedCrossRefGoogle Scholar
  18. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  19. Jami F, Slippers B, Wingfield MJ, Gryzenhout M (2012) Five new species of the Botryosphaeriaceae from Acacia karroo in South Africa. Cryptog Mycolog 33:245–266CrossRefGoogle Scholar
  20. Laundon GF (1973) Botryosphaeria obtusa, B. stevensii, and Otthia spiraeae in New Zealand. Trans Br Mycol Soc 61:369–374CrossRefGoogle Scholar
  21. Lazzizera C, Frisullo S, Alves A, Lopes J, Phillips AJL (2008) Phylogeny and morphology of Diplodia species on olives in southern Italy and description of Diplodia olivarum. Fungal Divers 31:63–71Google Scholar
  22. Linaldeddu BT, Franceschini A, Alves A, Phillips AJL (2013) Diplodia quercivora sp. nov.: a new species of Diplodia found on declining Quercus canariensis trees in Tunisia. Mycologia 105:1266–1274PubMedCrossRefGoogle Scholar
  23. Lygis V, Vasiliauskas R, Larsson KH, Stenlid J (2005) Wood-inhabiting fungi in stems of Fraxinus excelsior in declining ash stands of northern Lithuania, with particular reference to Armillaria cepistipes. Scand J For Res 20:337–346CrossRefGoogle Scholar
  24. Lynch SC, Eskalen A, Zambino PJ, Mayorquin JS, Wang DH (2013) Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California. Mycologia 105:124–140CrossRefGoogle Scholar
  25. Mehl JMW, Slippers B, Roux J, Wingfield MJ (2011) Botryosphaeriaceae associated with Pterocarpus angolensis (kiaat) in South Africa. Mycologia 103:534–553PubMedCrossRefGoogle Scholar
  26. Montagne JFC (1834) Notice sur les plantes cryptogames récemment découvertes en France contenant aussi l’indication précis des localités de quelques espèces les plus rares de la flore française. Ann Sci Nat Bot Sér 2(1):295–307Google Scholar
  27. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  28. Pérez CA, Wingfield MJ, Slippers B, Altier NA, Blanchette RA (2010) Endophytic and canker-associated Botryosphaeriaceae occurring on non-native Eucalyptus and native Myrtaceae trees in Uruguay. Fungal Divers 41:53–69CrossRefGoogle Scholar
  29. Phillips AJL, Crous PW, Alves A (2007) Diplodia seriata, the anamorph of “Botryosphaeriaobtusa. Fungal Divers 25:141–155Google Scholar
  30. Phillips AJL, Lopes J, Abdollahzadeh J, Bobev S, Alves A (2012) Resolving the Diplodia complex on apple and other Rosaceae hosts. Persoonia 29:29–38PubMedCrossRefPubMedCentralGoogle Scholar
  31. Phillips AJL, Alves A, Abdollahzadeh J, Slippers B, Wingfield MJ, Groenewald JZ, Crous PW (2013) The Botryosphaeriaceae: genera and species known from culture. Stud Mycol 76:51–167PubMedCrossRefPubMedCentralGoogle Scholar
  32. Przybyl K (2002) Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. For Pathol 32:387–394CrossRefGoogle Scholar
  33. Pukacki PM, Przybyl K (2005) Frost injury as a possible inciting factor in bud and shoot necroses of Fraxinus excelsior L. J Phytopathol 153:512–516CrossRefGoogle Scholar
  34. Punithalingam E, Walker JM (1973) Botryosphaeria obtusa. CMI Descriptions of pathogenic fungi and bacteria, no. 394. Commonwealth Mycological Institute, KewGoogle Scholar
  35. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311PubMedCrossRefGoogle Scholar
  36. Rodriguez F, Oliver JF, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitutions. J Theor Biol 142:485–501PubMedCrossRefGoogle Scholar
  37. Ronquist FR, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  38. Saccardo PA (1884) Sylloge fungorum. Vol. III. Edwards Brothers INC., Ann ArborGoogle Scholar
  39. Santos JM, Phillips AJL (2009) Resolving the complex of Phomopsis species and their Diaporthe teleomorphs on Foeniculum vulgare. Fungal Divers 34:111–125Google Scholar
  40. Shoemaker RA (1964) Conidial states of some Botryosphaeria species on Vitis and Quercus. Can J Bot 42:1297–1301CrossRefGoogle Scholar
  41. Sidoti A, Granata G (2004) L’orniello (Fraxinus ornus): nuovo ospite di Diplodia mutila. Inform Fitopatol 2:49–51Google Scholar
  42. Stevens NE (1933) Two apple black rot fungi in the United States. Mycologia 25:536–548CrossRefGoogle Scholar
  43. Stevens NE (1936) Two species of Physalospora in England. Mycologia 28:330–336CrossRefGoogle Scholar
  44. Sutton BC (1980) The coelomycetes. Commonwealth Mycological Institute, KewGoogle Scholar
  45. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0. Sinauer Associates, SunderlandGoogle Scholar
  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefPubMedCentralGoogle Scholar
  47. Wallander E (2008) Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst Evol 273:25–49CrossRefGoogle Scholar
  48. White TJ, Bruns T, Lee S, Taylor J (1990) Amplified and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322CrossRefGoogle Scholar

Copyright information

© Mushroom Research Foundation 2014

Authors and Affiliations

  • A. Alves
    • 1
  • B. T. Linaldeddu
    • 2
  • A. Deidda
    • 2
  • B. Scanu
    • 2
  • A. J. L. Phillips
    • 3
  1. 1.Departamento de Biologia, CESAMUniversidade de AveiroAveiroPortugal
  2. 2.Dipartimento di Agraria, Sezione di Patologia vegetale ed EntomologiaUniversità degli Studi di SassariSassariItaly
  3. 3.Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations