Fungal Diversity

, Volume 65, Issue 1, pp 127–165 | Cite as

Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies

  • E. Egidi
  • G. S. de Hoog
  • D. Isola
  • S. Onofri
  • W. Quaedvlieg
  • M. de Vries
  • G. J. M. Verkley
  • J. B. Stielow
  • L. Zucconi
  • L. Selbmann
Article

Abstract

The last decade has revealed an unexpected fungal diversity associated with natural rocks, often collected in environments influenced by harsh climatic conditions. Yet the phylogenetic affiliations and the taxonomy of many of these extreme fungi, mainly within Dothideomycetes, the largest class of Ascomycota, have only partially been described. In the present study we confirm that most rock inhabiting-fungi (RIF) are highly polyphyletic among Dothideomycetidae, mainly within the order Capnodiales, an order otherwise incorporating several families of major plant pathological importance. Novel taxa were identified within the two major and distinct clades of Teratosphaeriaceae, both comprising meristematic black fungi. Thirty one novel species and 13 new genera are proposed, based on ITS and partial nucLSU, RPB2 and BT2 sequences.

Keywords

Black yeasts Capnodiales Meristematic fungi Microcolonial fungi Phylogeny Taxonomy 

Supplementary material

13225_2013_277_MOESM1_ESM.pptx (113 kb)
ESM 1(PPTX 112 kb)
13225_2013_277_MOESM2_ESM.pptx (95 kb)
ESM 2(PPTX 94 kb)
13225_2013_277_MOESM3_ESM.pptx (69 kb)
ESM 3(PPTX 68 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401. doi:10.3114/sim0003 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bjedov I, Tenaillon O, Gérard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409. doi:10.1126/science.1082240 PubMedCrossRefGoogle Scholar
  4. Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47. doi:10.3114/sim.2009.64.02 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531. doi:10.1016/j.mib/2008.09.013 PubMedCentralPubMedCrossRefGoogle Scholar
  6. de Hoog GS, Beguin H, Batenburg-van de Vegte WH (1997) Phaeotheca triangularis, a new meristematic black yeast from a humidifier. Antonie Van Leeuwenhoek 71:289–295. doi:10.1023/A:1000156820793 PubMedCrossRefGoogle Scholar
  7. De Leo F, Urzì C, de Hoog GS (2003) A new meristematic fungus, Pseudotaeniolina globosa. Antonie Van Leeuwenhoek 83:351–36. doi:10.1023/A:1023331502345 PubMedCrossRefGoogle Scholar
  8. Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjeski S (1995) Black fungi in marble and limestones: an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167:295–304. doi:10.1016/0048-9697(95)04590-W CrossRefGoogle Scholar
  9. Dornieden T, Gorbushina AA, Krumbein WE (2000) Biodecay of mural paintings and stone monuments as a space/time related ecological situation – an evaluation of a series of studies. Int Biodeterior Biodegrad 46:261–270. doi:10.1016/S0964-8305(00)00107-4 CrossRefGoogle Scholar
  10. Favero-Longo SE, Gazzano C, Girlanda M, Castelli D, Tretiach M, Baiocchi C, Piervittori R (2011) Physical and chemical deterioration of silicate and carbonate rocks by meristematic microcolonial fungi and endolithic lichens (Chaetothyriomycetidae). Geomicrobiol J 28:732–744. doi:10.1080/01490451.2010.517696 CrossRefGoogle Scholar
  11. Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, Phengsintham P, Schroers HJ (2010) Microcyclospora and Microcyclosporella: novel genera accomodating epiphytic fungi causing sooty blotch on apple. In Persoonia 24:93–105. doi:10.3767/003158510X510560
  12. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053. doi:10.1126/science.215.4536.1045 PubMedCrossRefGoogle Scholar
  13. Gazzano C, Favero-Longo SE, Iacomussi P, Piervittori R (2012) Biocidal effect of lichen secondary metabolites against rock-dwelling microcolonial fungi, cyanobacteria and green algae. Int Biodeterior Biodegrad 84:300–306. doi:10.1016/j.ibiod.2012.05.033 CrossRefGoogle Scholar
  14. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631. doi:10.1111/j.1462-2920.2007.01301.x PubMedCrossRefGoogle Scholar
  15. Gorbushina AA, Krumbein WE, Hamman CH, Panina L, Soukharjevski S, Wollenzien U (1993) Role of black fungi in color change and biodeterioration of antique marbles. Geomicrobiol J 11:205–220. doi:10.1080/01490459309377952 CrossRefGoogle Scholar
  16. Gorbushina AA, Krumbein WE, Volkmann M (2002) Rock surfaces as life indicators: new ways to demonstrate life and traces of former life. Astrobiology 2:203–213. doi:10.1089/15311070260192273 PubMedCrossRefGoogle Scholar
  17. Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138. doi:10.1139/b03-011 CrossRefGoogle Scholar
  18. Gorbushina AA, Kotlova ER, Sherstneva OA (2008) Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Stud Mycol 61:91–97. doi:10.3114/sim.2008.61.09 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Göttlich E, van der Lubbe W, Lange B, Fiedler S, Melchert I, Reifenrath M, Flemming HC, de Hoog GS (2002) Fungal flora in ground-derived public drinking water. Int J Hyg Environ Health 205:269–279PubMedCrossRefGoogle Scholar
  20. Gueidan C, Savić S, Thüs H, Roux C, Keller C, Tibell L, Prieto M, Heiðmarsson S, Breuss O, Orange A, Fröberg L, Amtoft Wynns A, Navarro-Rosinés P, Krzewicka B, Pykälä J, Grube M, Lutzoni F (2009) Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58:184–208Google Scholar
  21. Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I (2006) Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol 72:7586–7593. doi:10.1128/AEM.01628-06 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hamada N, Abe N (2009) Physiological characteristics of 13 common fungal species in bathrooms. Mycoscience 50:421–429. doi:10.1007/s10267-009-0500-6 CrossRefGoogle Scholar
  23. Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/btg180 PubMedCrossRefGoogle Scholar
  24. Isola D (2010) Biodiversity, phylogeny and evolution of rock black fungi. Doctoral dissertation, Università degli Studi della Tuscia, Viterbo, Italy. http://dspace.unitus.it/bitstream/2067/1068/1/disola_tesid.pdf
  25. Isola D, Marzban G, Selbmann L, Onofri S, Laimer M, Sterflinger K (2011) Sample preparation and 2-DE procedure for protein expression profiling of black microcolonial fungi. Fungal Biol 115:971–977. doi:10.1016/j.funbio.2011.03.001 PubMedCrossRefGoogle Scholar
  26. Isola D, Selbmann L, Meloni P, Maracci E, Onofri S, Zucconi L (2013a) Detrimental rock black fungi and biocides: A study on the Monumental Cemetery of Cagliari. In: Rogerio-Candelera MA, Lazzari M, Cano E (eds) Science and Technology for the conservation of cultural heritage. CRC Press, London, pp 83–86Google Scholar
  27. Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013b) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. doi:10.1007/s11046-013-9635-2 PubMedCrossRefGoogle Scholar
  28. Kang JM, Jovine NM, Blaser JM (2006) A paradigm for direct stress-induced mutation in prokaryotes. FASEB J 20:2476–2485. doi:10.1096/fj.06-6209com PubMedCrossRefGoogle Scholar
  29. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. doi:10.1093/bioinformatics/btq224 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi, 10th edn. CABI Pubishing, WallingfordGoogle Scholar
  31. Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev desert (Israel), an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50:25–38. doi:10.1007/BF00378791 CrossRefGoogle Scholar
  32. Krumbein WE, Brehm U, Gerdes G, Gorbushina AA, Levit GS, Palinska KA (2003) Biofilm, biodictyon, biomat, microbialites, oolites, stromatolites, geophysiology, global mechanisms, parahistology. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and Recent Biofilms. Kluwer Academic Publishers, Dordrecht, pp 1–27CrossRefGoogle Scholar
  33. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808PubMedCrossRefGoogle Scholar
  34. Maksaev V, Munizaga F, Zentilli M, Charrier R (2009) Fission track thermochronology of Neogene plutons in the Principal Andean Cordillera of central Chile (33–35° S): implications for tectonic evolution and porphyry Cu-Mo mineralization. Andean Geol 36:153–171. doi:10.5027/andgeoV36n2-a01 Google Scholar
  35. Muller HJ (1964) The relation of recombination to mutational advantage. Mutat Res 1:2–9. doi:10.1016/0027–5107(64)90047–8 CrossRefGoogle Scholar
  36. Nai C, Wong HY, Pannenbecker A, Broughton WJ, Benoit I, de Vries RP, Gueidan C, Gorbushina AA (2013) Nutritional physiology of a rock-inhabiting, model micro-colonial fungus from an ancestral lineage of the Chaetothyriales (Ascomycetes). Fungal Genet Biol 56:54–66. doi:10.1016/j.fgb.2013.04.001 PubMedCrossRefGoogle Scholar
  37. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116. doi:10.1006/mpev.1996.0376 PubMedCrossRefGoogle Scholar
  38. Onofri S, Pagano S, Zucconi L, Tosi S (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam-gen and sp nov, from continental Antarctica. Nova Hedwigia 68:175–182Google Scholar
  39. Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at the boundaries of life. Adv Space Res 40:1657–1664. doi:10.1016/j.asr.2007.06.004 CrossRefGoogle Scholar
  40. Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistence of Antarctic black fungi e cryptoendolithic communities to simulated space and Mars conditions. Stud Mycol 61:99–109. doi:10.3114/sim.2008.61.10 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Onofri S, Selbmann L, Barreca D, Isola D, Zucconi L (2009) Do fungi survive under actual space conditions? Searching for evidence in favour of lithopanspermia. Plant Biosyst 143:S85–S87. doi:10.1080/11263500903208393 CrossRefGoogle Scholar
  42. Onofri S, Anastasi A, Del Frate G, Di Piazza S, Garnero N, Guglielminetti M, Isola D, Panno L, Ripa C, Selbmann L, Varese GC, Voyron S, Zotti M, Zucconi L (2011) Biodiversity of rock, beach and water fungi. Plant Biosyst 145:1–10. doi:10.1080/11263504.2011.633117 CrossRefGoogle Scholar
  43. Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sánchez Iñigo FJ, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516. doi:10.1089/ast.2011.0736 PubMedCrossRefGoogle Scholar
  44. Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  45. Pinna D, Salvadori O (1999) Biological growth on Italian monuments restored with organic or carbonatic compounds. In: Ciferri O, Mastromei G, Tiano P (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Plenum, NY, pp 149–154Google Scholar
  46. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 1:817–818. doi:10.1093/bioinformatics/14.9.817 CrossRefGoogle Scholar
  47. Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Mirzadi Gohari A, Mehrabi R, Crous PW (2011) Zymoseptoria gen. nov.: a new genus to accommodate septoria-like species occurring on graminicolous hosts. Persoonia 26:57–69. doi:10.3767/003158511X571841 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Rossetti F, Storti F, Salvini F (2000) Cenozoic noncoaxial transtension along the western shoulder of the Ross Sea, Antarctica, and the emplacement of McMurdo dyke arrays. Terra Nova 12:60–66. doi:10.1111/j.1365-3121.2000.00270.x CrossRefGoogle Scholar
  49. Ruibal C (2004) Isolation and characterization of melanized, slow-growing fungi from semiarid rock surfaces of central Spain and Mallorca. Doctoral dissertation. Universidad Autónoma de Madrid/Merck, Sharp & Dohme de España, MadridGoogle Scholar
  50. Ruibal C, Gonzalo P, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycol Prog 4:23–38. doi:10.1007/s11557-006-0107-7 CrossRefGoogle Scholar
  51. Ruibal C, Platas G, Bills GF (2008) High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia 21:93–110. doi:10.3767/003158508X371379 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133. doi:10.3114/sim.2009.64.06 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Samerpitak K, Van der Linde E, Choi HJ, Gerrits van den Ende AHG, Machouart M, Gueidan C, de Hoog GS (2013) Taxonomy of Ochroconis, a genus including opportunistic pathogens on humans and animals. Fungal Divers 2:1–38. doi:10.1007/s13225-013-0253-6 Google Scholar
  54. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052. doi:10.3852/mycologia.98.6.1041 PubMedCrossRefGoogle Scholar
  55. Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, De Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohmeyer J, Kruys A, Li YM, Lücking R, Lumbush HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15. doi:10.3114/sim.2009.64.01 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ (2004) Devriesia, a new hyphomycete genus to accommodate heat-resistant, cladosporium-like fungi. Can J Bot 82:914–926. doi:10.1139/b04-070 CrossRefGoogle Scholar
  57. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic Desert. Stud Mycol 51:1–32Google Scholar
  58. Selbmann L, de Hoog GS, Gerrits van den Ende AHG, Ruibal C, De Leo F, Zucconi L, Isola D, Ruisi S, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20. doi:10.3114/sim.2008.61.01 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944. doi:10.1016/j.funbio.2011.02.016 PubMedCrossRefGoogle Scholar
  60. Selbmann L, Isola D, Egidi E, Zucconi L, Gueidan C, de Hoog GS, Onofri S (2013a) Mountain tips as reservoirs for new rock fungal entities: saxomyces gen. nov. and new species from the Alps. Fungal Divers. doi:10.1007/s13225-013-0234-9 Google Scholar
  61. Selbmann L, de Hoog GS, Zucconi L, Isola D, Onofri S (2013b) Black yeasts from cold habitats. In: Seckbach J (ed) Yeasts from cold habitats. Springer, BerlinGoogle Scholar
  62. Selbmann L, Grube M, Onofri S, Isola D, Zucconi L (2013c) Antarctic epilithic lichens as niches for meristematic fungi. Biology 2:784–797. doi:10.3390/bioology2020784 CrossRefGoogle Scholar
  63. Sert HB, Sümbül H, Sterflinger K (2007a) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). Antonie Van Leeuwenhoek 91:217–227. doi:10.1007/s10482-006-9111-9 PubMedCrossRefGoogle Scholar
  64. Sert HB, Sümbül H, Sterflinger K (2007b) Sarcinomyces sideticae, a new black yeast from historical marble monuments in Side (Antalya, Turkey). Bot J Linn Soc 154:373–380. doi:10.1111/j.1095-8339.2007.00658.x CrossRefGoogle Scholar
  65. Sert HB, Sümbül H, Sterflinger K (2007c) A new species of Capnobotryella from monument surfaces. Mycol Res 111:1235–1241. doi:10.1016/j.mycres.2007.06.011 PubMedCrossRefGoogle Scholar
  66. Skinner DNB (1980) GANOVEX’79. N Z Antarct Rec 3:15–24Google Scholar
  67. Staley JT, Palmer F, Adams B (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095. doi:10.1126/science.215.4536.1093 PubMedCrossRefGoogle Scholar
  68. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771. doi:10.1080/10635150802429642 PubMedCrossRefGoogle Scholar
  69. Sterflinger K (1998) Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Van Leeuwenhoek 74:271–281. doi:10.1023/A:1001753131034 PubMedCrossRefGoogle Scholar
  70. Sterflinger K (2006) Black yeast and meristematic fungi: ecology, diversity and identification. In: Péter G, Rosa C (eds) The yeast handbook. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 501–514. doi:10.1007/3-540-30985-3_20 CrossRefGoogle Scholar
  71. Sterflinger K, de Baere R, de Hoog GS, de Wachter R, Krumbein WE, Haase G (1997) Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). Antonie Van Leeuwenhoek 72:349–363. doi:10.1023/A:1000570429688 PubMedCrossRefGoogle Scholar
  72. Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22Google Scholar
  73. Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, Zala M, Crous PW, McDonald BA (2012) Zymoseptoria ardabilia and Z. pseudotritici, two progenitor species of the Septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Mycologia 104:1397–1407. doi:10.3852/11-374 PubMedCrossRefGoogle Scholar
  74. Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K (2012) Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biol 116:932–940. doi:10.1016/j.funbio.2012.06.004 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Urzì C, Realini M (1998) Colour changes of Noto’s calcareous sandstone as related with its colonization by microorganisms. Int Biodeterior Biodegrad 42:45–54. doi:10.1016/S0964-8305(98)00045-6 CrossRefGoogle Scholar
  76. Urzì C, Wollenzien U, Zagari M, Krumbein WE (1994) Biodiversity of the marble inhabiting microflora. Colonisation, biodeterioration and control. In: Proceedings of the 4th Workshop, Eurocare - Euromarble, Aries, 1994. Bayerisches Landesamt fiir Denkmalpflege Zentrallabor, Forschungsber 13:1–16Google Scholar
  77. Vaughan DG, Bamber JL, Giovinetto M, Russel J, Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. J Clim 12:933–946CrossRefGoogle Scholar
  78. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedCentralPubMedGoogle Scholar
  79. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfe DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  80. Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294. doi:10.1016/0048-9697(95)04589-S CrossRefGoogle Scholar
  81. Zakharova K, Tesei D, Marzban G, Dijksterhuis J, Wyatt T, Sterflinger K (2012) Microcolonial fungi on rocks: a life in constant drought? Mycopathologia 175:537–547. doi:10.1007/s11046-012-9592-1 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Zalar P, de Hoog GS, Gunde-Cimerman N (1999) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48Google Scholar
  83. Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, Pogliani P, Selbmann L (2012) Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int Biodeterior Biodegrad 70:40–46. doi:10.1016/j.ibiod.2011.11.018 CrossRefGoogle Scholar

Copyright information

© Mushroom Research Foundation 2014

Authors and Affiliations

  • E. Egidi
    • 1
    • 2
  • G. S. de Hoog
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
  • D. Isola
    • 1
  • S. Onofri
    • 1
  • W. Quaedvlieg
    • 2
  • M. de Vries
    • 2
  • G. J. M. Verkley
    • 2
  • J. B. Stielow
    • 2
  • L. Zucconi
    • 1
  • L. Selbmann
    • 1
  1. 1.Dipartimento di Scienze Ecologiche e Biologiche (DEB)Università degli Studi della Tuscia, Largo dell’Università sncViterboItaly
  2. 2.Centraalbureau voor Schimmelcultures KNAW Fungal Biodiversity CentreUtrechtThe Netherlands
  3. 3.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Sun Yat-sen Memorial HospitalSun Yat-sen UniversityGuangzhouChina
  5. 5.Research Center for Medical MycologyPeking University Health Science CenterBeijingChina
  6. 6.Shanghai Institute of Medical Mycology, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
  7. 7.Basic Pathology DepartmentFederal University of Paraná StateCuritibaBrazil
  8. 8.King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations