Fungal Diversity

, Volume 60, Issue 1, pp 171–188 | Cite as

The exploitation of epichloae endophytes for agricultural benefit

  • Linda J. Johnson
  • Anouck C. M. de Bonth
  • Lyn R. Briggs
  • John R. Caradus
  • Sarah C. Finch
  • Damien J. Fleetwood
  • Lester R. Fletcher
  • David E. Hume
  • Richard D. Johnson
  • Alison J. Popay
  • Brian A. Tapper
  • Wayne R. Simpson
  • Christine R. Voisey
  • Stuart D. Card
Review

Abstract

Epichloae endophytes of family Clavicipitaceae (comprising genera Epichloë and Neotyphodium) are fungal symbionts of Pooideae grasses. The associations formed, range from mutually beneficial to antagonistic and the nature of this relationship is dependent upon the importance of vertical (via host seeds) versus horizontal (ascospore mediated) transmission of the fungus. These endophytes can enhance their hosts’ survival through protection from abiotic and biotic stresses and can thus be utilized in an agricultural context. Animal-safe grass-endophyte associations that confer bio-protective properties for increased pasture persistence and productivity have been developed and commercialized. One of the crucial drivers underpinning the selection of epichloae strains for commercial development is endophyte derived bioactivity. The potential of next generation endophytes is determined by testing a number of attributes such as agronomic fitness, animal and food safety as well as compatibility with host plants of interest. Strategic research supports these activities by focusing on elucidating mechanisms of compatibility between host and fungal symbiont, as well as investigating other molecular drivers of symbiosis such as siderophore mediated iron-uptake, fungal signalling, fungal growth in host plants and fungal secondary metabolism. This review weaves together the different strands of multidisciplinary research aimed at ultimately exploiting epichloae endophytes for increased pasture performance.

Keywords

Epichloë Neotyphodium Pooideae Symbiosis Secondary metabolite Toxicology 

Notes

Acknowledgments

We thank Geoffrey Lane for help with drawing the chemical structures of the endophyte alkaloids and Natasha Forester for providing confocal images of endophyte growth in planta. The authors gratefully acknowledge the support and funding of PGG Wrightson Seeds for research pertaining to the development and selection of endophyte strains for commercialization.

References

  1. Bacon C (1995) Toxic endophyte-infected tall fescue and range grasses: historic perspectives. J Anim Sci 73:861–870PubMedGoogle Scholar
  2. Bacon CW, White JF Jr (1994) Stains, media and procedures for analysing endophytes. In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Ann Arbor, pp 47–56Google Scholar
  3. Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloë typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581PubMedGoogle Scholar
  4. Ball OJP, Miles CO, Prestidge RA (1997) Ergopeptine alkaloids and Neotyphodium lolii-mediated resistance in perennial ryegrass against adult Heteronychus arator (Coleoptera: Scarabaeidae). J Econ Entomol 90:1382–1391Google Scholar
  5. Barker GM, Pottinger RP, Addison PJ, Prestidge RA (1984) Effect of Lolium endophyte fungus infections on behaviour of adult Argentine stem weevil. N Z J Agric Res 27:271–277CrossRefGoogle Scholar
  6. Barker DJ, Davies E, Lane GA, Latch GCM, Nott, HM, Tapper, BA (1993) Effect of water deficient on alkaloid concentrations in perennial ryegrass endophyte associations. In: Hume De, Latch GCM, Easton HS (eds) Proceedings of the second international symposium on Acremonium/grass interactions, pp 67–71Google Scholar
  7. Bartnicki-Garcia S (2002) Hyphal tip growth: outstanding questions. In: Osiewacz HD (ed) Molecular biology of fungal development. Marcel Dekker, New York, pp 29–58Google Scholar
  8. Beard JL, Dawson H, Pinero DJ (1996) Iron metabolism: a comprehensive review. Nutr Rev 54:295–317PubMedCrossRefGoogle Scholar
  9. Blankenship JD, Spiering MJ, Wilkinson HH, Fannin FF, Bush LP, Schardl CL (2001) Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 58:395–401PubMedCrossRefGoogle Scholar
  10. Bluett S, Thom ER, Clark D, MacDonald K, Minnee E (2005) Effects of perennial ryegrass infected with either AR1 or wild endophyte on dairy production in the Waikato. N Z J Agric Res 48:197–212CrossRefGoogle Scholar
  11. Bonos SA, Clarke BB, Meyer WA (2006) Breeding for disease resistance in the major cool-season turfgrasses. Annu Rev Phytopathol 44:213–234PubMedCrossRefGoogle Scholar
  12. Bouton JH, Latch GCM, Hill NS, Hoveland CS, McCann MA, Watson RH, Parish JA, Hawkins LL, Thompson FN (2002) Reinfection of tall fescue cultivars with non-ergot alkaloid-producing endophytes. Agronomie 94:567–574CrossRefGoogle Scholar
  13. Briggs LR, Sprosen JM, Tapper B, Easton HS (2007) AR1 quality assurance by ELISA. Proceedings of the 6th international symposium on fungal endophytes of grasses, Christchurch, New Zealand, March 25–28, pp 289–291Google Scholar
  14. Bultman TL, Leuchtmann A (2008) Biology of the Epichloë-Botanophila interaction: an intriguing association between fungi and insects. Fungal Biol Rev 22:131–138CrossRefGoogle Scholar
  15. Cao M, Koulman A, Johnson L, Lane G, Rasmussen S (2008) Advanced data-mining strategies for the analysis of direct-infusion ion trap mass spectrometry data from the association of perennial ryegrass with its endophytic fungus, Neotyphodium lolii. Plant Physiol 146:1501–1514PubMedCrossRefGoogle Scholar
  16. Card SD, Rolston MP, Park Z, Cox N, Hume DE (2011) Fungal endophyte detection in pasture grass seed utilising the infection layer and comparison to other detection techniques. Seed Sci Tech 39:581–592Google Scholar
  17. Card SD, Tapper BA, Lloyd-West C, Wright KM (2013) Assessment of fluorescein-based fluorescent dyes for tracing Neotyphodium endophytes in planta. Mycologia 105:221–229PubMedCrossRefGoogle Scholar
  18. Charlton ND, Shoji JY, Ghimire SR, Nakashima J, Craven KD (2012) Deletion of the fungal gene soft disrupts mutualistic symbiosis between the grass endophyte Epichloë festucae and the host plant. Eukaryot Cell 11:1463–1471PubMedCrossRefGoogle Scholar
  19. Christensen MJ, Voisey CR (2009) Tall fescue-endophyte symbiosis. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century, agronomy monologue, vol 53. Book and Multimedia Publishing, Madison, pp 251–272Google Scholar
  20. Christensen MJ, Ball OJ-P, Bennett RJ, Schardl CL (1997) Fungal and host genotype effects on compatibility and vascular colonization by Epichloë festucae. Mycol Res 101:493–501CrossRefGoogle Scholar
  21. Christensen MJ, Bennett RJ, Schmid J (2002) Growth of Epichloë and Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106:93–96CrossRefGoogle Scholar
  22. Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR (2008) Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93PubMedCrossRefGoogle Scholar
  23. Dombrowski J, Baldwin J, Alderman S, Martin R (2011) Transformation of Epichloë typhina by electroporation of conidia. BMC Res Notes 4:46PubMedCrossRefGoogle Scholar
  24. Doss RP, Welty RE (1995) A polymerase chain reaction-based procedure for detection of Acremonium coenophialum in tall fescue. Phytopathology 85:913–917CrossRefGoogle Scholar
  25. Easton HS (2007) Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding. Euphytica 154:295–306CrossRefGoogle Scholar
  26. Easton H, Lee C, Fitzgerald R (1994) Tall fescue in Australia and New Zealand. N Z J Agric Res 37:405–417CrossRefGoogle Scholar
  27. Easton HS, Christensen MJ, Eerens JPJ, Fletcher LR, Hume DE, Keogh RG, Lane GA, Latch GCM, Pennell CGL, Popay AJ, Rolston MP, Sutherland BL, Tapper BA (2001) Ryegrass endophyte: a New Zealand grassland success story. Proc N Z GrasslAssoc 63:37–46Google Scholar
  28. Easton H, Latch G, Tapper B, Ball J (2002) Ryegrass host genetic control of concentrations of endophyte-derived alkaloids. Crop Sci 42:51–57PubMedCrossRefGoogle Scholar
  29. Easton H, Lyons T, Mace W, Simpson W, De Bonth A, Cooper B, Panckhurst K (2007) Differential expression of loline alkaloids in perennial ryegrass infected with endophyte isolated from tall fescue. In: Popay AJ, Thom ER (eds) 6th international symposium on fungal endophytes of grasses, Christchurch, New Zealand. New Zealand Grassland Association, Dunedin, pp 163–165Google Scholar
  30. Eaton CJ, Cox MP, Ambrose B, Becker M, Hesse U, Schardl CL, Scott B (2010) Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant Physiol 153:1780–1794PubMedCrossRefGoogle Scholar
  31. Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195PubMedCrossRefGoogle Scholar
  32. Ekanayake PN, Hand ML, Spangenberg GC, Forster JW, Guthridge KM (2012) Genetic diversity and host specificity of fungal endophyte taxa in fescue pasture grasses. Crop Sci 52:2243–2252CrossRefGoogle Scholar
  33. Finch S, Munday R, Munday J, Fletcher L, Hawkes A (2007) Risk assessment of endophyte toxins. In: Popay A, Thom E (eds) 6th international symposium on fungal endophytes of grasses, Christchurch, New Zealand. New Zealand Grassland Association, Dunedin, pp 419–421Google Scholar
  34. Finch S, Wilkins A, Popay A, Babu J, Tapper B, Lane G (2010) The isolation and bioactivity of epoxy-janthitrems from AR37 endophyte-infected perennial ryegrass. In: Young C, Aiken G, McCulley R, Strickland J, Schardl C (eds) 7th international symposium on fungal endophytes of grasses, Lexington, Kentucky, USA. The Samuel Roberts Noble Foundation, ArdmoreGoogle Scholar
  35. Finch S, Fletcher L, Babu J (2012) The evaluation of endophyte toxin residues in sheep fat. N Z Vet J 60:56–60PubMedCrossRefGoogle Scholar
  36. Finch S, Thom E, Babu J, Hawkes A, Waugh C (2013) The evaluation of fungal endophyte toxin residues in milk. N Z Vet J 61:11–17PubMedCrossRefGoogle Scholar
  37. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488PubMedCrossRefGoogle Scholar
  38. Fleetwood DF (2007) Molecular characterisation of the EAS gene cluster for ergot alkaloid biosynthesis in epichloë endophytes of grasses. PhD thesis, Massey University, New ZealandGoogle Scholar
  39. Fleetwood DJ, Scott B, Lane GA, Tanaka A, Johnson RD (2007) A complex ergovaline gene cluster in epichloë endophytes of grasses. Appl Environ Microbiol 73:2571–2579PubMedCrossRefGoogle Scholar
  40. Fleetwood DJ, Khan AK, Johnson RD, Young CA, Mittal S, Wrenn RE, Hesse U, Foster SJ, Schardl CL, Scott B (2011) Abundant degenerate miniature inverted-repeat transposable elements in genomes of epichloid fungal endophytes of grasses. Genome Biol Evol 3:1253–1264PubMedCrossRefGoogle Scholar
  41. Fletcher LR (1999) “Non-toxic" endophytes in ryegrass and their effect on livestock health and production. Grassl Res Pract 7:133–139Google Scholar
  42. Fletcher LR, Harvey IC (1981) An association of a Lolium endophyte with ryegrass staggers. N Z Vet J 29:185–186PubMedCrossRefGoogle Scholar
  43. Freeman EM (1902) The seed-fungus of Lolium temulentum, L., the Darnel. Phil Trans R Soc Lond B 196:1–27CrossRefGoogle Scholar
  44. Gallagher R, Hawkes A (1986) The potent tremorgenic neurotoxins lolitrem B and aflatrem: a comparison of the tremor response in mice. Experientia 42:823–825PubMedCrossRefGoogle Scholar
  45. Gallagher RT, White EP, Mortimer PH (1981) Ryegrass staggers: isolation of potent neurotoxins lolitrem A and lolitrem B from staggers-producing pastures. N Z Vet J 29:189–190PubMedCrossRefGoogle Scholar
  46. Gallagher R, Hawkes A, Steyn P, Vleggaar R (1984) Tremorgenic neurotoxins from perennial ryegrass causing ryegrass staggers disorder of livestock: structure elucidation of lolitrem B.614–616Google Scholar
  47. Gentile A, Rossi MS, Cabral D, Craven KD, Schardl CL (2005) Origin, divergence, and phylogeny of epichloë endophytes of native Argentine grasses. Mol Phylogenet Evol 35:196–208PubMedCrossRefGoogle Scholar
  48. Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication: Tansley review. New Phytol 183:273–290PubMedCrossRefGoogle Scholar
  49. Goldson SL, Rowarth JS, Caradus JR (2005) The impact of invasive invertebrate pests in pastoral agriculture: a review. N Z J Agric Res 48:401–415CrossRefGoogle Scholar
  50. Gow NAR (1995) Tip growth and polarity. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman & Hall, London, pp 277–299CrossRefGoogle Scholar
  51. Gwinn KD, Collins-Shepard AMH, Reddick BB (1991) Tissue print-immunoblot, an accurate method for the detection of Acremonium coenophialum in tall fescue. Phytopathology 81:747–748CrossRefGoogle Scholar
  52. Hahn H, Huth W, Schoberlein W, Diepenbrock W (2003) Detection of endophytic fungi in Festuca spp. by means of tissue print immunoassay. Plant Breed 122:217–222CrossRefGoogle Scholar
  53. Halisky PM, Saha DC, R FC (1985) Prevalence of non-choke-inducing endophytes in turf and forage grasses. Phytopathology 75:1331Google Scholar
  54. Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112PubMedCrossRefGoogle Scholar
  55. Harold FM (1997) How hyphae grow: morphogenesis explained? Protoplasma 197:137–147CrossRefGoogle Scholar
  56. Hill NS, Bouton JH, Hiatt EE III, Kittle B (2005) Seed maturity, germination, and endophyte relationships in tall fescue. Crop Sci 45:859–863CrossRefGoogle Scholar
  57. Hopkins AA, Young CA, Panaccione DG, Simpson WR, Mittal S, Bouton JH (2010) Agronomic performance and lamb health among several tall fescue novel endophyte combinations in the South-Central USA. Crop Sci 50:1552–1561CrossRefGoogle Scholar
  58. Hoveland CS (1993) Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant. Agric Ecosyst Environ 44:3–12CrossRefGoogle Scholar
  59. Hume DE, Barker DJ (2005) Growth and management of endophytic grasses in pastoral agriculture. In: Roberts CA, West CP, Spiers DE (eds) Neotyphodium in cool-season grasses. Blackwell Publishing, Ames, pp 201–226Google Scholar
  60. Hume DE, Popay AJ, Barker DJ (1993) Effect of Acremonium endophyte on growth of ryegrass and tall fescue under varying levels of soil moisture and Argentine stem weevil attack. In: Hume DE, Latch GCM, Easton HS (eds) Second international symposium on Acremonium/grass interactions. AgResearch Ltd, Palmerston North, pp 161–164Google Scholar
  61. Hume DE, Popay AJ, Cooper BM, Eerens JPJ, Lyons TB, Pennell GCL, Tapper BA, Latch GCM, Baird DB (2004) Effect of a novel endophyte on the productivity of perennial ryegrass (Lolium perenne) in New Zealand. In: Kallenbach R, Rosenkrans CJ, Lock TR (eds) 5th international symposium on Neotyphodium/grass interactions. Fayetteville, Arkansas, p 313Google Scholar
  62. Hume DE, Ryan DL, Cooper BM, Popay AJ (2007) Agronomic performance of AR37-infected ryegrass in northern New Zealand. Proc N Z Grassl Assoc 69:201–205Google Scholar
  63. Hume DE, Cooper BM, Panckhurst KA (2009) The role of endophyte in determining the persistence and productivity of ryegrass, tall fescue and meadow fescue in Northland. Proc N Z Grassl Assoc 71:145–150Google Scholar
  64. Hume DE, Schmid J, Rolston MP, Vijayan P, Hickey MJ (2011) Effect of climatic conditions on endophyte and seed viability in stored ryegrass seed. Seed Sci Tech 39:481–489Google Scholar
  65. Jensen JG, Popay AJ (2004) Perennial ryegrass infected with AR37 endophyte reduces survival of porina larvae. N Z Plant Prot 57:323–328Google Scholar
  66. Jensen JG, Popay AJ, Tapper BA (2009) Argentine stem weevil adults are affected by meadow fescue endophyte and its loline alkaloids. N Z Plant Prot 62:12–18Google Scholar
  67. Johnson LJ, Johnson RD, Schardl CL, Panaccione DG (2003) Identification of differentially expressed genes in the mutualistic association of tall fescue with Neotyphodium coenophialum. Physiol Mol Plant Pathol 63:305–317CrossRefGoogle Scholar
  68. Johnson R, Voisey C, Johnson L, Pratt J, Fleetwood D, Khan A, Bryan G (2007) Distribution of NRPS gene families within the Neotyphodium/Epichloë complex. Fungal Genet Biol 44:1180–1190PubMedCrossRefGoogle Scholar
  69. Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S (2013) An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Path. doi:10.1371/journal.ppat.1003332
  70. Keogh RG, Lawrence T (1987) Influence of Acremonium lolii presence on emergence and growth of ryegrass seedlings. N Z J Agric Res 30:507–510CrossRefGoogle Scholar
  71. Koga H, Christensen MJ, Bennett RJ (1993) Incompatibility of some grass-acremonium endophyte associations. Mycol Res 97:1237–1244CrossRefGoogle Scholar
  72. Koulman A, Tapper B, Fraser K, Cao M, Lane G, Rasmussen S (2007a) High-throughput direct-infusion ion trap mass spectrometry: a new method for metabolomics. Rapid Comm Mass Spectrom 21:421–428CrossRefGoogle Scholar
  73. Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007b) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355–360PubMedCrossRefGoogle Scholar
  74. Koulman A, Lee TV, Fraser K, Johnson L, Arcus V, Lott JS, Rasmussen S, Lane G (2012) Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne. Phytochemistry 75:128–139PubMedCrossRefGoogle Scholar
  75. Kuldau GA, Tsai HF, Schardl CL (1999) Genome sizes of Epichloë species and anamorphic hybrids. Mycologia 91:776–782CrossRefGoogle Scholar
  76. Langer RHM (1972) How grasses grow, vol 34. Edward Arnold Ltd, London, p 60Google Scholar
  77. Latch GCM, Christensen MJ (1982) Ryegrass endophyte, incidence, and control. N Z J Agric Res 25:443–448CrossRefGoogle Scholar
  78. Latch GCM, Christensen MJ (1985) Artificial infection of grasses with endophytes. Ann Appl Biol 107:17–24CrossRefGoogle Scholar
  79. Latch GCM, Tapper BA (1988) Lolium endophytes – problems and progress. Proc Japan Assoc Mycol Suppl 1:220–223Google Scholar
  80. Latch GCM, Hunt WF, Musgrave DR (1985) Endophytic fungi affect growth of perennial ryegrass. N Z J Agric Res 28:165–168CrossRefGoogle Scholar
  81. Lee TV, Johnson LJ, Johnson RD, Koulman A, Lane GA, Lott JS, Arcus VL (2010) Structure of a eukaryotic non-ribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. J Biol Chem 285:2415–2427PubMedCrossRefGoogle Scholar
  82. Leuchtmann A, Clay K (1997) The population biology of grass endophytes. In: Carroll G, Tudzinsky P (eds) The mycota, vol V, Part A: plant relationships. Springer, Berlin, pp 185–202Google Scholar
  83. Leuchtmann A, Schardl CL (1998) Mating compatibility and phylogenetic relationships among two new species of Epichloë and other congeneric European species. Mycol Res 102:1169–1182CrossRefGoogle Scholar
  84. Leyronas C, Raynal G (2008) Roles of fungal ascospores in infection of orchardgrass (Dactylis glomerata) by Epichloë Typhina agent of choke disease. J Plant Path 90:15–21Google Scholar
  85. Lyons PC, Plattner RD, Bacon CW (1986) Occurrence of peptide and clavine ergot alkaloids in tall fescue grass. Science 232:487–489PubMedCrossRefGoogle Scholar
  86. Majewska-Sawka A, Nakashima H (2004) Endophyte transmission via seeds of Lolium perenne L.: immunodetection of fungal antigens. Fun Gen Biol 41:534–541CrossRefGoogle Scholar
  87. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  88. McLennan E (1920) The endophytic fungus of Lolium. Proc R Soc Victoria (XXXII C N S) 32:252–301Google Scholar
  89. Meyer WA (1982) Breeding disease-resistant cool-season turfgrass cultivars for the United States. Plant Dis 66:341–344CrossRefGoogle Scholar
  90. Mikkelsen L, Roulund N, Lubeck M, Jensen DF (2001) The perennial ryegrass endophyte Neotyphodium lolii genetically transformed with the green fluorescent protein gene (gfp) and visualization in the host plant. Mycol Res 105:644–650CrossRefGoogle Scholar
  91. Miles C, Wilkins A, Gallagher R, Hawkes A, Munday S, Towers N (1992) Synthesis and tremorgenicity of paxitriols and lolitriol: possible biosynthetic precursors of Lolitrem B. J Agric Food Chem 40:234–238CrossRefGoogle Scholar
  92. Milne G (2007) Technology transfer of novel ryegrass endophytes in New Zealand. In: Popay A, Thom E (eds) 6th international symposium on fungal endophytes of grasses, Christchurch, New Zealand. New Zealand Grassland Association, Dunedin, pp 237–239Google Scholar
  93. Miyazaki S, Ishizaki I, Ishizaka M, Kanbara T, Ishiguro-Takeda Y (2004) Lolitrem B residue in fat tissues of cattle consuming endophyte-infected perennial ryegrass straw. J Vet Diagn Investig 16:340–342CrossRefGoogle Scholar
  94. Miyazaki S, Ikeda T, Hanazumi M, Fukumoto Y, Yamata T, Mikami O, Yamanaka N, Murata H, Shimada N, Ishikuro E et al (2007) Toxicological evaluation of endophyte-infected perennial ryegrass straw to Japanese Black steers. In: 6th international symposium on fungal endophytes of grasses, Christchurch, New Zealand. New Zealand Grassland Association, Dunedin, pp 415–418Google Scholar
  95. Moon CD, Tapper BA, Scott B (1999) Identification of Epichloë endophytes in planta by a microsatellite-based PCR fingerprinting assay with automated analysis. Appl Env Microbiol 65:1268–1279Google Scholar
  96. Moon CD, Miles CO, Jarlfors U, Schardl CL (2002) The evolutionary origins of three new Neotyphodium endophyte species from grasses indigenous to the Southern Hemisphere. Mycologia 94:694–711PubMedCrossRefGoogle Scholar
  97. Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467PubMedCrossRefGoogle Scholar
  98. Moore D (1998) Fungal morphogenesis, vol 35. Developmental and cell biology. Cambridge University Press, Cambridge, p 469CrossRefGoogle Scholar
  99. Munday-Finch S, Wilkins A, Miles C, Ede R, Thomson R (1996) Structure elucidation of lolitrem F, a naturally-occurring stereoisomer of the tremorgenic mycotoxin lolitrem B, isolated from Lolium perenne infected with Acremonium lolii. J Agric Food Chem 44:2782–2788CrossRefGoogle Scholar
  100. Munday-Finch S, Wilkins A, Miles C, Tomoda H, Omura S (1997) Isolation and structure elucidation of lolilline, a possible biosynthetic precursor of the lolitrem family of tremorgenic mycotoxins. J Agric Food Chem 45:199–204CrossRefGoogle Scholar
  101. Ngugi HK, Scherm H (2006) Biology of flower-infecting fungi. Annual Rev Phytopathol 44:261–282CrossRefGoogle Scholar
  102. Panaccione D, Wang J, Young C, Schardl C, Scott B, Damrongkool P (2001) Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci USA 98:12820–12825PubMedCrossRefGoogle Scholar
  103. Parish JA, McCann MA, Watson RH, Paiva NN, Hoveland CS, Parks AH (2003) Use of nonergot alkaloid-producing endophytes for alleviating tall fescue toxicosis in stocker cattle. J Anim Sci 81(11):2856–2868PubMedGoogle Scholar
  104. Parish JA, Parish JR, Best TF, Boland HT, Young CA (2013) Effects of selected endophyte and tall fescue cultivar combinations on steer grazing performance, indicators of fescue toxicosis, feedlot performance, and carcass traits. J Anim Sci 91:342–355PubMedCrossRefGoogle Scholar
  105. Pennell CG, Rolston MP (2012) Novel uses of grass endophyte technology. In: 8th international symposium on fungal endophyte of grasses Lanzhou, ChinaGoogle Scholar
  106. Pennell CGL, Popay AJ, Ball OJ-P, Hume DE, Baird DB (2005) Occurrence and impact of pasture mealybug (Balanococcus poae) and root aphid (Aploneura lentisci) on ryegrass (Lolium spp.) with and without infection by Neotyphodium fungal endophytes. N Z J Agric Res 48:329–337CrossRefGoogle Scholar
  107. Pennell C, Rolston M, Bonth AD, Simpson W, Hume D (2010) Development of a bird-deterrent fungal endophyte in turf tall fescue. N Z J Agric Res 53:145–150CrossRefGoogle Scholar
  108. Philipson MN, Christey MC (1986) The relationship of host and endophyte during flowering, seed formation, and germination of Lolium perenne. New Zealand J Bot 24:125–134CrossRefGoogle Scholar
  109. Popay AJ, Gerard PJ (2007) Cultivar and endophyte effects on a root aphid, Aploneura lentisci, in perennial ryegrass. N Z Plant Prot 60:223–227Google Scholar
  110. Popay AJ, Hume DE (2011) Endophytes improve ryegrass persistence by controlling insects. In: Mercer CF (ed) Pasture persistence symposium. Grassland research and practice series, vol 15. pp 149–156Google Scholar
  111. Popay AJ, Lane GA (2000) The effect of crude extracts containing loline alkaloids on two New Zealand insect pests. In: Paul VH, Dapprich PD (eds) 4th international Neotyphodium/grass interactions symposium. Soest, Germany, pp 471–475Google Scholar
  112. Popay AJ, Thom ER (2009) Endophyte effects on major insect pests in Waikato dairy pasture. Proc N Z Grassl Assoc 71:121–126Google Scholar
  113. Popay AJ, Wyatt RT (1995) Resistance to Argentine stem weevil in perennial ryegrass infected with endophytes producing different alkaloids. In: Proceedings 48th New Zealand plant protection conference, pp 229–236Google Scholar
  114. Popay AJ, Prestidge RA, Rowan DD, Dymock JJ (1990) The role of Acremonium lolii mycotoxins in insect resistance of perennial ryegrass (Lolium perenne). In: Quisenberry SS, Joost RE (eds) Procceedings of the international symposium on Acremonium/grass interactions. Baton Rouge, pp 44–48Google Scholar
  115. Popay AJ, Hume DE, Mainland RA, Saunders CJ (1995) Field resistance to Argentine stem weevil (Listronotus bonariensis) in different ryegrass cultivars infected with an endophyte deficient in lolitrem B. N Z J Agric Res 38:519–528CrossRefGoogle Scholar
  116. Popay AJ, Hume DE, Baltus JG, Latch GCM, Tapper BA, Lyons TB, Cooper BM, Pennell CG, Eerens JPJ, Marshall SL (1999) Field performance of perennial ryegrass (Lolium perenne) infected with toxin-free fungal endophytes (Neotyphodium spp.). In: Woodfield DR, Matthew C (eds) Ryegrass endophyte: an essential New Zealand symbiosis, vol grassland research & practice series no. 7. pp 113–122Google Scholar
  117. Popay AJ, Hume DE, Davis KL, Tapper BA (2003) Interactions between endophyte (Neotyphodium spp.) and ploidy in hybrid and perennial ryegrass cultivars and their effects on Argentine stem weevil (Listronotus bonariensis). N Z J Agric Res 46:311–319CrossRefGoogle Scholar
  118. Popay AJ, Tapper BA, Podmore C (2009) Endophyte-infected meadow fescue and loline alkaloids affect Argentine stem weevil larvae. N Z Plant Prot 62:19–27Google Scholar
  119. Popay AJ, Cotching B, Moorhead A, Ferguson CM (2012) AR37 reduces porina populations and plant damage in the field. Proc N Z Grassl Assoc 74:165–169Google Scholar
  120. Prestidge RA, Gallagher RT (1985) Lolitrem B - a stem weevil toxin isolated from Acremonium-infected ryegrass. In: 38th New Zealand weed and pest control conference. pp 38–40Google Scholar
  121. Prestidge R, Pottinger RP, Barker GM (1982) An association of Lolium endophyte with ryegrass resistance to Argentine stem weevil. In: 35th New Zealand weed and pest control conference. pp 199–222Google Scholar
  122. Rasmussen S, Parsons AJ, Fraser K, Xue H, Newman JA (2008) Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection. Plant Physiol 146:1440–1453PubMedCrossRefGoogle Scholar
  123. Rasmussen S, Lane GA, Mace W, Parsons AJ, Fraser K, Xue H (2012) The use of genomics and metabolomics methods to quantify fungal endosymbionts and alkaloids in grasses. Methods Mol Biol 860:213–226Google Scholar
  124. Reddick BB, Collins NC (1988) An improved method for the detection of Acremonium coenophialum in tall fescue plants. Phytopathology 78:418–420CrossRefGoogle Scholar
  125. Reidell W, Kieckhefer R, Petroski R, Powell R (1991) Naturally occurring and synthetic loline alkaloid derivatives: insect feeding behavior modification and toxicity. J Entomol Sci 26:122–129Google Scholar
  126. Rolston MP, Agee CS (2007) Delivering quality seed to specification - the USA and NZ novel endophyte experience. In: Popay A, Thom E (eds) 6th international symposium on fungal endophytes of grasses, Christchurch, New Zealand. New Zealand Grassland Association, Dunedin, pp 229–231Google Scholar
  127. Rolston MP, Stewart AV, Latch GCM, Hume DE (2002) Endophytes in New Zealand grass seeds: occurrence and implications for conservation of grass species. N Z J Bot 40:365–372CrossRefGoogle Scholar
  128. Rowan D (1993) Lolitrems, peramine and paxilline: mycotoxins of the ryegrass/endophyte interaction. Agric Syst Environ 44:103–122Google Scholar
  129. Rowan D, Gaynor D (1986) Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. J Chem Ecol 12:647–658CrossRefGoogle Scholar
  130. Rowan DD, Hunt MB, Gaynor DL (1986) Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte Acremonium loliae. J Chem Soc Chem Comm:935–936Google Scholar
  131. Rowan DD, Dymock JJ, Brimble MA (1990) Effect of fungal metabolite peramine and analogs on feeding development of Argentine stem weevil (Listronotus bonariensis). J Chem Ecol 16:1683–1695CrossRefGoogle Scholar
  132. Saha DC, Jackson MA, Johnson-Cicalese JM (1988) A rapid staining method for detection of endophytic fungi in turf and forage grasses. Phytopathology 78:237–239CrossRefGoogle Scholar
  133. Saikia S, Takemoto D, Tapper BA, Lane GA, Fraser K, Scott B (2012) Functional analysis of an indole-diterpene gene cluster for lolitrem B biosynthesis in the grass endosymbiont Epichloë festucae. FEBS Lett 30:2563–2569CrossRefGoogle Scholar
  134. Sampson K (1933) The systemic infection of grasses by Epichloë typhina (Pers.) Tul. Trans Br Mycol Soc 18:30–47CrossRefGoogle Scholar
  135. Sampson K (1937) Further observations on the systemic infection of Lolium. Trans Br Mycol Soc 21(1):84–97Google Scholar
  136. Sampson K (1939) Additional notes on the systemic infection of Lolium. Trans Br Mycol Soc 23(4):316–319Google Scholar
  137. Schardl CL, Philips TD (1997) Protective grass endophytes: where are they from and where are they going? Plant Dis 81:430–438CrossRefGoogle Scholar
  138. Schardl CL, Leuchtmann A, Tsai HF, Collett MA, Watt DM, Scott DB (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics 136:1307–1317PubMedGoogle Scholar
  139. Schardl CL, Leuchtmann A, Chung KR, Penny D, Siegel MR (1997) Coevolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. Mol Biol Evol 14:133–143CrossRefGoogle Scholar
  140. Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids-biology and molecular biology. In: Cordell GA (ed) The alkaloids: chemistry and biology. Academic, San Diego, pp 45–86Google Scholar
  141. Schardl C, Grossman R, Nagabhyru P, Faulkner J, Mallik U (2007) Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996PubMedCrossRefGoogle Scholar
  142. Schardl CL, Craven KD, Speakman S, Stromberg A, Lindstrom A, Yoshida R (2008) A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Systematic Biol 57:483–498CrossRefGoogle Scholar
  143. Schardl CL, Young CA, Faulkner JR, Florea S, Pan J (2012) Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol 5:331–344CrossRefGoogle Scholar
  144. Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9(2):e1003323Google Scholar
  145. Schmidt SP, Hoveland CS, Clark EM, Davis ND, Smith LA, Grimes HW, Holliman JL (1982) Association of an endophytic fungus with fescue toxicity in steers fed Kentucky 31 tall fescue seed or hay. Applied Anim Sci 55:1259–1263Google Scholar
  146. Scott B, Eaton CJ (2008) Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol 11:488–493PubMedCrossRefGoogle Scholar
  147. Selosse MA, Schardl CL (2007) Fungal endophytes of grasses: hybrids rescued by vertical transmission? An evolutionary perspective. New Phytol 173:452–458PubMedCrossRefGoogle Scholar
  148. Simpson W, Mace W (2012) Novel associations between epichloid endophytes and grasses: possibilities and outcomes. In: Young CA, Aiken GE, McCulley RL, Strickland JR, Schardl CL (eds) 7th international symposium on fungal endophytes of grasses, Lexington, Kentucky, USA, 2010. The Samuel Roberts Noble Foundation, Ardmore, pp 35–39Google Scholar
  149. Simpson WR, Schmid J, Singh J, Faville MJ, Johnson RD (2012) A morphological change in the fungal symbiont Neotyphodium lolii induces dwarfing in its host plant Lolium perenne. Fungal Biol 116:234–240PubMedCrossRefGoogle Scholar
  150. Snyder H, Seo S, Rademacher IF, Kühbauch W (1990) Spatial distribution of growth rates and of epidermal cell lengths in the elongation zone during leaf development in Lolium perenne. Planta 181:423–431Google Scholar
  151. Spiering MJ, Moon CD, Wilkinson HH, Schardl CL (2005) Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 169:1403–1414PubMedCrossRefGoogle Scholar
  152. Spiering MJ, Faulkner JR, Zhang D-X, Machado C, Grossman RB, Schardl CL (2008) Role of the LolP cytochrome P450 monooxygenase in loline alkaloid biosynthesis. Fungal Genet Biol 45:1307–1314PubMedCrossRefGoogle Scholar
  153. Stuedemann J, Hoveland C (1988) Fescue endophyte: history and impact on animal agriculture. J Prod Agric 1:39–44CrossRefGoogle Scholar
  154. Sugawara K, Ohkubo H, Yamashita M, Mikoshiba Y (2004) Flowers for Neotyphodium endophytes detection: a new observation method using flowers of host grasses. Mycoscience 45:222–226CrossRefGoogle Scholar
  155. Takach JE, Mittal S, Swoboda GA, Bright SK, Trammell MA, Hopkins AA, Young CA (2012) Genotypic and chemotypic diversity of Neotyphodium endophytes in tall fescue from Greece. Appl Environ Microbiol 78:5501–5510PubMedCrossRefGoogle Scholar
  156. Takemoto D, Tanaka A, Scott B (2006) A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell 18:2807–2821PubMedCrossRefGoogle Scholar
  157. Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, Sumimoto H, Scott B (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci USA 108:2861–2866PubMedCrossRefGoogle Scholar
  158. Tan YY, Spiering MJ, Scott V, Lane GA, Christensen MJ, Schmid J (2001) In planta regulation of extension of an endophytic fungus and maintenance of high metabolic rates in its mycelium in the absence of apical extension. Appl Environ Microbiol 67:5377–5383PubMedCrossRefGoogle Scholar
  159. Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050PubMedCrossRefGoogle Scholar
  160. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066PubMedCrossRefGoogle Scholar
  161. Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 68:1165–1178PubMedCrossRefGoogle Scholar
  162. Tapper BA, Latch GCM (1999) Selection against toxin production in endophyte-infected perennial ryegrass. Ryegrass endophyte: an essential New Zealand symbiosis. Grassl Res Pract Ser 7:107–111Google Scholar
  163. Tapper BA, Rowan DD, Latch GCM (1989) Detection and measurement of the alkaloid peramine in endophyte-infected grasses. J Chromatography A 463:133–138CrossRefGoogle Scholar
  164. Thom ER, Popay AJ, Hume DE, Fletcher LR (2012) Evaluating the performance of endophytes in farm systems to improve farmer outcomes – a review. Crop Pasture Sci 63:927–943CrossRefGoogle Scholar
  165. Tsai HF, Liu JS, Staben C, Christensen MJ, Latch GCM, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci 91:2542–2546PubMedCrossRefGoogle Scholar
  166. van Zijll de Jong E, Dobrowolski MP, Bannan NR, Stewart AV, Smith KF, Spangenberg GC, Forster JW (2008) Global genetic diversity of the perennial ryegrass fungal endophyte Neotyphodium lolii. Crop Sci 48:1487–1501CrossRefGoogle Scholar
  167. Vladimirskaja NN (1928) Contribution to the biology of Epichloë typhina. Tul. La Defense des Plantes 3–4:335–347Google Scholar
  168. Voisey CR (2010) Intercalary growth in hyphae of filamentous fungi. Fungal Biol Rev 24:123–131CrossRefGoogle Scholar
  169. Wang J, Machado C, Panaccione DG, Tsai H-F, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198PubMedCrossRefGoogle Scholar
  170. Welty RE, Azevedo MD, Cooper TM (1987) Influence of moisture content, temperature and length of storage on seed germination and survival of endophytic fungi in seeds of tall fescue and perennial ryegrass. Phytopathology 77:893–900CrossRefGoogle Scholar
  171. White JF, Morgan JG (1996a) Morphological and physiological adaptations of Balansieae and trends in the evolution of grass endophytes. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS Press, St. Paul, pp 133–154Google Scholar
  172. White JF, Morgan JG (1996b) Morphological and physiological adaptations of Balansieae and trends in the evolution of grass endophytes. In: Redlin S, Carris L (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS Press, St. Paul, pp 133–154Google Scholar
  173. Wilkinson H, Siegel M, Blankenship J, Mallory A, Bush L, Schardl C (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. Mol Plant-Microb Interact 13:1027–1033CrossRefGoogle Scholar
  174. Williams CL, Goldson SL, Baird DB, Bullock DW (1994) Geographical origin of an introduced insect pest, Listronotus bonariensis (Kuschel), determined by RAPD analysis. Heredity 72:412–419PubMedCrossRefGoogle Scholar
  175. Wilson SM, Easton HS (1997) Seed transmission of an exotic endophyte in tall fescue. In: Bacon CW, Hill NS (eds) Neotyphodium/grass interactions. Plenum Press, London, pp 281–283CrossRefGoogle Scholar
  176. Yates SG, Fenster JC, Bartelt RJ (1989) Assay of tall fescue seed extracts, fractions, and alkaloids using the large milkweed bug. J Agric Food Chem 37:354–357CrossRefGoogle Scholar
  177. Young C (2005) The indole diterpene gene cluster from the ryegrass endophyte, Neotyphodium lolii, is required for the biosynthesis of lolitrem B, a bioprotectve alkaloid. Massey University, Palmerston NorthGoogle Scholar
  178. Young CA, Bryant MK, Christensen M, Tapper BA, Bryan GT, Scott B (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Genet Genomics 274:13–29PubMedCrossRefGoogle Scholar
  179. Young CA, Felitti S, Shields K, Spangenberg G, Johnson RD, Bryan GT, Saikia S, Scott B (2006) A complex gene cluster for indole-diterpene biosynthesis in the grass endophyte Neotyphodium lolii. Fungal Genet Biol 43:679–693PubMedCrossRefGoogle Scholar
  180. Young CA, Tapper BA, May K, Moon CD, Schardl CL, Scott B (2009) Indole-diterpene biosynthetic capability of epichloë endophytes as predicted by ltm gene analysis. Appl Environ Microbiol 75:2200–2211PubMedCrossRefGoogle Scholar
  181. Young C, Hume D, McCulley R (2013) Fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe? J Anim Sci. doi:10.2527/jas.2012-5951

Copyright information

© Mushroom Research Foundation 2013

Authors and Affiliations

  • Linda J. Johnson
    • 1
  • Anouck C. M. de Bonth
    • 1
  • Lyn R. Briggs
    • 2
  • John R. Caradus
    • 5
  • Sarah C. Finch
    • 2
  • Damien J. Fleetwood
    • 4
  • Lester R. Fletcher
    • 3
  • David E. Hume
    • 1
  • Richard D. Johnson
    • 1
  • Alison J. Popay
    • 2
  • Brian A. Tapper
    • 1
  • Wayne R. Simpson
    • 1
  • Christine R. Voisey
    • 1
  • Stuart D. Card
    • 1
  1. 1.AgResearch Ltd, Grasslands Research CentrePalmerston NorthNew Zealand
  2. 2.AgResearch Ltd, Ruakura Research CentreHamiltonNew Zealand
  3. 3.AgResearch Ltd, Lincoln Research CentreLincolnNew Zealand
  4. 4.AgResearch Laboratory of Structural Biology, School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  5. 5.Grasslanz Technology LtdPalmerston NorthNew Zealand

Personalised recommendations