Fungal Diversity

, Volume 65, Issue 1, pp 167–182 | Cite as

Mountain tips as reservoirs for new rock-fungal entities: Saxomyces gen. nov. and four new species from the Alps

  • L. Selbmann
  • D. Isola
  • E. Egidi
  • L. Zucconi
  • C. Gueidan
  • G. S. de Hoog
  • S. Onofri
Article

Abstract

As part of a worldwide sampling nine black fungi were isolated from rocks collected in four distinct sites of the Alps at high altitudes. Based on a nucSSU, nucLSU and mtSSU multi-locus phylogeny, seven of them were found to cluster into a distinct and well-supported clade in a basal position within the Class Dothideomycetes. As in other rock fungi these new groups of isolates were characterized by a meristematic growth and a scarcely differentiated morphology with highly melanized and thick-walled toruloid hyphae. Nonetheless, few peculiar characters were also observed as convoluted hyphal tips and the production of spherical propagules. The new genus and species Saxomyces alpinus and S. penninicus, are here described based on morphological and molecular data, in a yet to be defined order of the Dothideomycetes. The remaining two black fungi clustered in Cryomyces, a genus previously exclusively found in rocks from the McMurdo Dry Valleys in Antarctica. These two isolates were genetically distant from other Antarctic Cryomyces species based on ITS sequences, and they showed a peculiar morphology; they are here described as the new species C. montanus and C. funiculosus. Implications of our results on the evolution, adaptation and dispersal of rock-inhabiting fungi under extreme conditions are discussed.

Keywords

Microcolonial fungi Dothideomycetes Extremotolerance Multilocus phylogeny 

References

  1. Arenz BE, Held BW, Jurgens JA, Blanchette RA (2011) Fungal colonization of exotic substrates in Antarctica. Fungal Diversity 49:13–22CrossRefGoogle Scholar
  2. De Hoog GS (1999) Ecology and evolution of black yeasts and their relatives. In: de Hoog GS (ed) Studies in Mycology. Centraalbureau voor Shimmelcultures, Baarn, p 208Google Scholar
  3. Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531PubMedCentralPubMedCrossRefGoogle Scholar
  4. De Leo F, Urzì C, de Hoog GS (2003) A new meristematic fungus, Pseudotaeniolina globosa. Antonie van Leeuwenhoek 83:351–360PubMedCrossRefGoogle Scholar
  5. Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjeski S (1995) Black fungi in marble and limestones – an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167:295–304CrossRefGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 40:783–791CrossRefGoogle Scholar
  7. Friedmann EI (1982) Endolithic microorganisms in the Antarctic Cold Desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  8. Gorbushina AA, Krumbein WE, Hamman CH, Panina L, Soukharjevski S, Wollensien U (1993) Role of black fungi in color-change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221CrossRefGoogle Scholar
  9. Gorbushina AA, Panina LK, Vlasov DY, Krumbein WE (1996) Fungi deteriorating Chersonessus marbles. Mycologia i Fitopatologija 30:23–28Google Scholar
  10. Gorbushina AA (2002) Microcolonial fungi: survival potential of terrestrial vegetative structures. Astrobiology 3:543–554CrossRefGoogle Scholar
  11. Gorbushina AA (2003) Methodologies and techniques for detecting extraterrestrial (microbial) life. Microcolonial fungi: Survival potential of terrestrial vegetative structures. Astrobiology 3:543–554PubMedCrossRefGoogle Scholar
  12. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631PubMedCrossRefGoogle Scholar
  13. Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: Hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138CrossRefGoogle Scholar
  14. Gorbushina AA, Kort R, Schulte A, Lazarus D, Schnetger B, Brumsack HJ, Broughton WJ, Favet J (2007) Life in Darwin’s dust: Inter-continental transport and survival of microbes in the nineteenth century. Environ Microbiol 9:2911–2922PubMedCrossRefGoogle Scholar
  15. Gorbushina AA, Kotlova ER, Sherstneva OA (2008) Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Stud Mycol 61:91–97PubMedCentralPubMedCrossRefGoogle Scholar
  16. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  17. Jobb GA, Von Haeseler A, Strimmer K (2004) Treefinder: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18PubMedCentralPubMedCrossRefGoogle Scholar
  18. Marvasi M, Donnarumma F, Frandi A, Mastromei G, Sterflinger K, Tiano P, Perito B (2012) Black microcolonial fungi as deteriogens of two famous marble statues in Florence, Italy. Int Biodeterior Biodegrad 68:36–44CrossRefGoogle Scholar
  19. Nienow JA, Friedmann EI (1993) Terrestrial litophytic (rock) communities. In: Friedmann EI (ed) Antarctic Microbiology. Wiley-Liss, New York, pp 343–412Google Scholar
  20. Nylander JAA. 2004. Mr Aic.pl. Programme distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
  21. Onofri S, Pagano S, Zucconi L, Tosi S (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes) anam. gen. sp. nov., from continental Antarctica. Nova Hedwigia 68:175–181Google Scholar
  22. Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at the boundaries of life. Advances in Space Research 40:1657–1664CrossRefGoogle Scholar
  23. Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109PubMedCentralPubMedCrossRefGoogle Scholar
  24. Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran K, Rabbow E, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516PubMedCrossRefGoogle Scholar
  25. Palmer FE, Staley JT, Ryan B (1990) Ecophysiology of microcolonial fungi and lichens on rocks in Northeastern Oregon. New Phytol 116:613–620CrossRefGoogle Scholar
  26. Page RDM (1996) Treeview: An application to display phylogenetic trees on personal computers. Bioinformatics 12:357–358CrossRefGoogle Scholar
  27. Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russel NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157PubMedCrossRefGoogle Scholar
  28. Ruibal C (2004) Isolation and characterization of melanized, slow-growing fungi from semiarid rock surfaces of central Spain and Mallorca. Ph.D. dissertation. Universidad Autónoma de Madrid/Merck, Sharp & Dohme de España, MadridGoogle Scholar
  29. Ruibal C, Gonzalo P, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycol Prog 4:23–38CrossRefGoogle Scholar
  30. Ruibal C, Platas G, Bills GF (2008) High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia 21:93–110PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, De Hoog GS (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133PubMedCentralPubMedCrossRefGoogle Scholar
  32. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. PNAS 74:5463–5467PubMedCentralPubMedCrossRefGoogle Scholar
  33. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052PubMedCrossRefGoogle Scholar
  34. Schoch CL, Crous PW, Groenewald JZS, Boehm EWA, BurgessTI GJ, De HGS, De DLJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15PubMedCentralPubMedCrossRefGoogle Scholar
  35. Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: Cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32Google Scholar
  36. Selbmann L, De Hoog GS, Gerrits Van Den Ende AHG, Ruibal C, De Leo F, Zucconi L, Isola D, Ruisi S, Onofri S (2008) Drought meets acid: Three new genera in a Dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedCentralPubMedCrossRefGoogle Scholar
  37. Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: Detection by PCR assays. Fungal Biology 115:937–944PubMedCrossRefGoogle Scholar
  38. Sert HB, Sümbül H, Sterflinger K (2007a) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). Antonie van Leeuwenhoek 91:217–227PubMedCrossRefGoogle Scholar
  39. Sert HB, Sümbül H, Sterflinger K (2007b) Sarcinomyces sideticae, a new black yeast from historical marble monuments in Side (Antalya, Turkey). Bot J Linn Soc 154:373–380CrossRefGoogle Scholar
  40. Sert HB, Sümbül H, Sterflinger K (2007c) A new species of Capnobotryella from monument surfaces. Mycol Res 111:1235–1241PubMedCrossRefGoogle Scholar
  41. Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: Common inhabitants on desert rocks? Science 215:1093–1095PubMedCrossRefGoogle Scholar
  42. Sterflinger K, de Baere R, de Hoog GS, de Watcher R, Krumbein WE, Haase G (1997) Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). Antonie van Leeuwenhoek 72:349–363PubMedCrossRefGoogle Scholar
  43. Sterflinger K (1998) Temperature e NaCl- tolerance of rock-inhabiting meristematic fungi. Antonie van Leeuwenhoek 74:271–281PubMedCrossRefGoogle Scholar
  44. Sterflinger K (2006) Black yeast and meristematic fungi: ecology, diversity and identification. In: Péter G, Rosa C (eds) The yeast handbook. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 501–514CrossRefGoogle Scholar
  45. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  46. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  47. Tsuneda A, Hambleton S, Currah RS (2011) The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces, and Phaeococcomyces. Botany 89:523–536CrossRefGoogle Scholar
  48. Van Uden N (1984) Temperature profiles of yeasts. Advances in Microbiological Physiolology 25:195–251CrossRefGoogle Scholar
  49. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedCentralPubMedGoogle Scholar
  50. Vincent W (2000) Evolutionary origins of Antarctic mycobiota: invasion, selection and endemism. Antarct Sci 12:374–385CrossRefGoogle Scholar
  51. Vishniac HS (1987) Psychrophily and systematics of yeast-like fungi. In: Hoog GS de, Smith MTh, Weijman ACM, (eds), The expanding Realm of Yeast-like Fungi. Studies in Mycology 30: 389–402Google Scholar
  52. White TJ, Bruns T, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols, A guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  53. Volkmann M, Gorbushina AA (2006) A broadly applicable method for extraction and characterisation of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol Lett 255:286–295PubMedCrossRefGoogle Scholar
  54. Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294CrossRefGoogle Scholar
  55. Wollenzien U, de Hoog GS, Krumbein WE, Uijthof JMJ (1997) Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean basin. Antonie van Leeuwenhoek 71:281–288PubMedCrossRefGoogle Scholar
  56. Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31:511–516Google Scholar
  57. Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, Pogliani P, Selbmann L (2012) Biodeteriorigenous agents dwelling the wall paintings of the Holy Saviour’s Cave (Vallerano, Italy). Int Biodeterior Biodegrad 70:40–46CrossRefGoogle Scholar

Copyright information

© Mushroom Research Foundation 2013

Authors and Affiliations

  • L. Selbmann
    • 1
  • D. Isola
    • 1
  • E. Egidi
    • 1
    • 3
  • L. Zucconi
    • 1
  • C. Gueidan
    • 2
  • G. S. de Hoog
    • 3
  • S. Onofri
    • 1
  1. 1.DEB, Università degli Studi della Tuscia, Largo dell’UniversitàViterboItaly
  2. 2.Division of Genomic & Microbial Diversity, Department of Life SciencesNatural History MuseumLondonUK
  3. 3.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands

Personalised recommendations