Fungal Diversity

, Volume 57, Issue 1, pp 149–210

Towards a natural classification of Botryosphaeriales

  • Jian-Kui Liu
  • Rungtiwa Phookamsak
  • Mingkhuan Doilom
  • Saowanee Wikee
  • Yan-Mei Li
  • Hiran Ariyawansha
  • Saranyaphat Boonmee
  • Putarak Chomnunti
  • Dong-Qin Dai
  • Jayarama D. Bhat
  • Andrea I. Romero
  • Wen-Ying Zhuang
  • Jutamart Monkai
  • E. B. Gareth Jones
  • Ekachai Chukeatirote
  • Thida Win Ko Ko
  • Yong-Chang Zhao
  • Yong Wang
  • Kevin D. Hyde
Article

Abstract

The type specimens of Auerswaldia, Auerswaldiella, Barriopsis, Botryosphaeria, Leptoguignardia, Melanops, Neodeightonia, Phaeobotryon, Phaeobotryosphaeria, Phyllachorella, Pyrenostigme, Saccharata, Sivanesania, Spencermartinsia and Vestergrenia were examined and fresh specimens of Botryosphaeriales were collected from Thailand. This material is used to provide a systematic treatment of Botryosphaeriales based on morphology and phylogeny. Two new genera, Botryobambusa and Cophinforma are introduced and compared with existing genera. Four species new to science, Auerswaldia dothiorella, A. lignicola, Botryosphaeria fusispora and Phaeobotryosphaeria eucalypti, are also described and justified. We accept 29 genera in Botryosphaeriales, with Macrovalsaria being newly placed. In the phylogenetic tree, the 114 strains of Botyrosphaeriales included in the analysis cluster into two major clades with 80 %, 96 % and 1.00 (MP, ML and BY) support, with Clade A containing the family type of Botryosphaeriaceae, and Clade B containing Phyllosticta, Saccharata and Melanops species. This group may represent Phyllostictaceae. In Clade A the taxa analyzed cluster in eight sub-clades (Clades A1–8). Clade A1 comprises three distinct subclusters corresponding to the genera Diplodia (Diplodia Clade), Neodeightonia (Neodeightonia Clade) and Lasiodiplodia (Lasiodiplodia Clade). Clade A2 clusters into three groups representing Phaeobotryosphaeria (100 %), Phaeobotryon (100 %) and Barriopsis (94 %). Clade A3 incorporates 17 strains that cluster into three well-supported genera (Dothiorella (86 %), Spencermartinsia (100 %) and Auerswaldia (63 %); the position of Macrophomina is not stable. Clade A4 is a single lineage (100 %) representing the new genus Botryobambusa. Clade A5 is a well-supported subclade incorporating Neofussicoccum. Clade A6 represents the type species of Botryosphaeria, three other Botryosphaeria species and two other genera, Neoscytalidium and Cophinforma gen. nov. Clade A7 comprises two Pseudofusicoccum species and Clade A8 has two Aplosporella species. These sub-clades may eventually require separate families but this requires analysis of a much larger dataset. Our data advances the understanding of Botryosphaeriales, there is, however, still much research to be carried out with resolution of families and genera, linkage of sexual and asexual morphs and differentiation of cryptic species.

Keywords

Asexual morphs Botryosphaeria Botryosphaeriaceae Classification Diplodia Generic types Lasiodiplodia Multi-gene phylogeny New genera Phyllosticta 

References

  1. Abdollahzadeh J, Goltapeh EM, Javadi A, Shams-Bakhsh M, Zare R, Phillips AJL (2009) Barriopsis iraniana and Phaeobotryon cupressi: two new species of the Botryosphaeriaceae from trees in Iran. Persoonia 23:1–8PubMedGoogle Scholar
  2. Abdollahzadeh J, Javadi A, Goltapeh EM, Zare R, Phillips AJL (2010) Phylogeny and morphology of four new species of Lasiodiplodia from Iran. Persoonia 25:1–10PubMedGoogle Scholar
  3. Adesemoye AO, Eskalen A (2011) First report of Spencermartinsia viticola, Neofusicoccum australe, and N. parvum causing branch canker of citrus in California. Plant Dise 95:770–770Google Scholar
  4. Alves A, Correia A, Luque J, Phillips AJL (2004) Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 96:598–613PubMedGoogle Scholar
  5. Alves A, Correia A, Phillips AJL (2006) Multi-gene genealogies and morphological data support Diplodia cupressi sp. nov., previously recognized as D. pinea f. sp. cupressi, as a distinct species. Fungal Divers 23:1–15Google Scholar
  6. Alves A, Crous PW, Correia A, Phillips AJL (2008) Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers 28:1–13Google Scholar
  7. Barber PA, Burgess TJ, St J, Hardy GE, Slippers B, Keane PJ, Wingfield MJ (2005) Botryosphaeria species from Eucalyptus in Australia are pleoanamorphic, producing Dichomera synanamorphs in culture. Mycol Res 109:1347–1363PubMedGoogle Scholar
  8. Barr ME (1972) Preliminary studies on the Dothideales in temperate North AmericaGoogle Scholar
  9. Barr ME (1987) Prodomus to the class Loculoascomycetes. Published by the author, Amherst, MAGoogle Scholar
  10. Bisby GR, Mason EW (1940) List of Pyrenomycetes recorded for Britain. Trans Br Mycol Soc 24:127–243Google Scholar
  11. Boonmee S, Zhang Y, Chomnunti P, Chukeatirote E, Tsui CKM, Bahkali AH, Hyde KD (2011) Revision of lignicolous Tubeufiaceae based on morphological reexamination and phylogenetic analysis. Fungal Divers 51:63–102Google Scholar
  12. Booth C (1958) Studies of pyrenomycetes: III Otthia spiraeae (Fuckel) Fuckel, syn. Diplodia sarmentorum (Fr.) Fr. Trans Br Mycol Soc 41:335–340Google Scholar
  13. Burgess TI, Barber PA, Mohali S, Pegg G, de Beer W, Wingfield MJ (2006) Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia 98:423–435PubMedGoogle Scholar
  14. Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas RG (2011) The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers 50:121–133Google Scholar
  15. Cai L, Jeewon R, Hyde KD (2006) Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycol Res 110:137–150PubMedGoogle Scholar
  16. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia pp. 553–556Google Scholar
  17. Cesati V, De Notaris G (1863) Schema di classificazione degli sferiacei italici aschigeri piu’ o meno appartenenti al genere Sphaeria nell’antico significato attribuitoglide Persoon. Comment Soc Crittog Ital 4:177–240Google Scholar
  18. Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R (2006) TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinforma 7(1):439Google Scholar
  19. Chomnunti P, Schoch CL, Aguirre-Hudson B, Ko-Ko TW, Hongsanan S, Jones EBG, Kodsueb R, Phookamsak R, Chukeatirote E, Bahkali AH, Hyde KD (2011) Capnodiaceae. Fungal Divers 51:103–134PubMedGoogle Scholar
  20. Clendenin I (1896) Lasiodiplodia E. & E., n. gen. Bot Gaz 21(2):92Google Scholar
  21. Cooke MC (ed) (1871) Handbook of British fungi. Illustrations of British Fungi 2nd edn. London: HardwickeGoogle Scholar
  22. Cooke MC (1890) Fungi of New Zealand. Grevillea 19:47–49Google Scholar
  23. Crous PW, Denman S, Taylor JE, Swart L, Palm ME (2004) Cultivation and diseases of Proteaceae: Leucadendron, Leucospermum and Protea. Centraalbureau voor Schimmelcultures (CBS) vol 2Google Scholar
  24. Crous PW, Palm ME (1999) Reassessment of the anamorph genera Botryodiplodia, Dothiorella and Fusicoccum. Sydowia 51:167–175Google Scholar
  25. Crous PW, Slippers B, Wingfield MJ, Rheeder J, Marasas WFO, Philips AJL, Alves A, Burgess TI, Barber PA, Groenewald JZ (2006) Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235–253PubMedGoogle Scholar
  26. Damm U, Cannon PF, Woudenberg JHC, Crous PW (2012a) The Colletotrichum acutatum species complex. Stud Mycol 73:37–113Google Scholar
  27. Damm U, Cannon PF, Woudenberg JHC, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW (2012b) The Colletotrichum boninense species complex. Stud Mycol 73:1–36Google Scholar
  28. Damm U, Crous PW, Fourie PH (2007a) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99:664–680PubMedGoogle Scholar
  29. Damm U, Fourie PH, Crous PW (2007b) Aplosporella prunicola, a novel species of anamorphic Botryosphaeriaceae. Fungal Divers 27:35–43Google Scholar
  30. Denman PW, Taylor JE, Kang JC, Pascoe I, Michael J (2000) An overview of the taxonomic history of Botryosphaeria, and a re-evaluation of its anamorphs based on morphology and ITS rDNA phylogeny. Stud Mycol 45:29–140Google Scholar
  31. Denman S, Crous PW, Groenewald JZE, Slippers B, Wingfield BD, Wingfield MJ (2003) Circumscription of Botryosphaeria species associated with Proteaceae based on morphology and DNA sequence data. Mycologia 95:294–307PubMedGoogle Scholar
  32. Denman S, Crous PW, Wingfield MJ (1999) A taxonomic reassessment of Phyllachora proteae, a leaf pathogen of Proteaceae. Mycologia 91:510–516Google Scholar
  33. Doidge EM (1942) Revised descriptions of South African species of Phyllachora and related genera. Bothalia 4:421–463Google Scholar
  34. Eriksson O (1981) The families of bitunicate Ascomycetes. Opera Botanica 60:1–220Google Scholar
  35. Farr ML (1989) Two new species of tropical fungi. Memoirs of the New York Botanical Garden 49:70–73Google Scholar
  36. Felsenstein J (2004) Inferring phytogenies. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  37. Fries E (1823) Systema Mycolgicum 2(2):423–424Google Scholar
  38. Fuckel L (1870) Symbolae mycologicae: Beiträge zur Kenntniss der rheinischen Pilze. Jahrb Nassauischen Vereins Naturk 23–24:1–459Google Scholar
  39. Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers 47:19–27Google Scholar
  40. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323PubMedGoogle Scholar
  41. Glienke C, Pereira OL, Stringari D, Fabris J, Kava-Cordeiro V, Galli-Terasawa L, Cunnington J, Shivas RG, Groenewald JZ, Crous PW (2011) Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot. Persoonia 26:47–56PubMedGoogle Scholar
  42. González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42Google Scholar
  43. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series. pp 95–98Google Scholar
  44. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth & Bisby’s Dictionary of the Fungi (Eighth Edition). CAB InternationalGoogle Scholar
  45. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lücking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, Mclaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Kõljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schüßler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedGoogle Scholar
  46. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42(2):182Google Scholar
  47. Hsieh W, Chen C (1994) Sivanesania, a new botryosphaeriaceous ascomycete genus on Rubus from Taiwan. Mycol Res 98:44–46Google Scholar
  48. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75Google Scholar
  49. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755PubMedGoogle Scholar
  50. Hyde KD, Chomnunti P, Crous PW, Groenewald JZ, Damm U, Ko-Ko TW, Shivas RG, Summerell BA, Tan YP (2010) A case for re-inventory of Australia’s plant pathogens. Persoonia 25:50–60PubMedGoogle Scholar
  51. Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating anamorphic fungi in a natural classification–checklist and notes for 2010. Mycosphere 2(1):1–88Google Scholar
  52. Hyde KD, Taylor JE, Fröhlich J (2000) Genera of Ascomycetes from palms. Fungal Diversity Research Series 2:1–247.Google Scholar
  53. Jacobs K, Rehner S (1998) Comparison of cultural and morphological characters and ITS sequences in anamorphs of Botryosphaeria and related taxa. Mycologia 90:601–610Google Scholar
  54. Jami F, Slippers B, Wingfield MJ, Gryzenhout M (2012) Five new species of the Botryosphaeriaceae from Acacia karroo in South Africa. Crypto Myco (In press)Google Scholar
  55. Kar AK, Maity MK (1971) Leaf-Inhabiting Pyrenomycetes of West Bengal (India). Mycologia 63:1024–1029Google Scholar
  56. Kirk P, Cannon PF, Minter D, Stalpers J (eds) (2008) Ainsworth &Bisby’s Dictionary of the Fungi, 10th edn. CAB International, UKGoogle Scholar
  57. Ko-Ko TW, Stephenson SL, Bahkali AH, Hyde KD (2011) From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Divers 50:113–120Google Scholar
  58. Lazzizera C, Frisullo S, Alves A, Lopes J, Phillips AJL (2008a) Phylogeny and morphology of Diplodia species on olives in southern Italy and description of Diplodia olivarum sp. nov. Fungal Divers 31:63–71Google Scholar
  59. Lazzizera C, Frisullo S, Alves A, Phillips AJL (2008b) Morphology, phylogeny and pathogenicity of Botryosphaeria and Neofusicoccum species associated with drupe rot of olives in southern Italy. Plant Pathol 57:948–956Google Scholar
  60. Li WY, Zhuang WY (2009) Preliminary study on relationships of Dothideales and its allies. Mycosystema 28:161–170Google Scholar
  61. Liu JK, Chomnunti P, Cai L, Phookamsak R, Chukeatirote E, Jones EBG, Moslem M, Hyde KD (2010) Phylogeny and morphology of Neodeightonia palmicola sp. nov. from palms. Sydowia 62:261–276Google Scholar
  62. Liu JK, Phookamsak R, Jones EBG, Zhang Y, Ko-Ko TW, Hu HL, Boonmee S, Doilom M, Chukeatirote E, Bahkali AH, Wang Y, Hyde KD (2011) Astrosphaeriella is polyphyletic, with species in Fissuroma gen. nov., and Neoastrosphaeriella gen. nov. Fungal Divers 51:135–154Google Scholar
  63. Lumbsch HT, Huhndorf SM (2010) Myconet Volume 14: Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana: Life and Earth Sc NSGoogle Scholar
  64. Luttrell ES (ed) (1973) Loculoascomycetes, vol. 4. The fungi: an advanced treatise. Academic, New YorkGoogle Scholar
  65. Madrid H, Ruíz-Cendoya M, Cano J, Stchigel A, Orofino R, Guarro J (2009) Genotyping and in vitro antifungal susceptibility of Neoscytalidium dimidiatum isolates from different origins. Int J Antimicrob Agents 34:351–354PubMedGoogle Scholar
  66. Marincowitz S, Groenewald JZ, Wingfield MJ, Crous PW (2008) Species of Botryosphaeriaceae occurring on Proteaceae. Persoonia 21:111–118PubMedGoogle Scholar
  67. Massee G (1887) British pyrenomycetes. Grevillea 16:34–39Google Scholar
  68. Miller MA, PfeifferW, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop 2010 (GCE), pp 1–8Google Scholar
  69. Mohali S, Slippers B, Wingfield MJ (2007) Identification of Botryosphaeriaceae from Eucalyptus, Acacia and Pinus in Venezuela. Fungal Divers 25:103–125Google Scholar
  70. Müller E (1955) Leptoguignardia, eine neue Gattung der bitunicaten Ascomyceten. Sydowia 9:216–220Google Scholar
  71. Nylander JAA (2004) MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  72. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  73. Pavlic D, Slippers B, Coutinho TA, Gryzenhout M, Wingfield MJ (2004) Lasiodiplodia gonubiensis sp. nov., a new Botryosphaeria anamorph from native Syzygium cordatum in South Africa. Stud Mycol 50:313–322Google Scholar
  74. Pavlic D, Slippers B, Coutinho TA, Wingfield MJ (2009a) Multiple gene genealogies and phenotypic data reveal cryptic species of the Botryosphaeriaceae: a case study on the Neofusicoccum parvum/N. ribis complex. Molecular Phylogenetics and Evolution 51:259–268PubMedGoogle Scholar
  75. Pavlic D, Slippers B, Coutinho TA, Wingfield MJ (2009b) Molecular and phenotypic characterisation of three phylogenetic species discovered within the Neofusicoccum parvum/N. ribis complex. Mycologia 101:636–647PubMedGoogle Scholar
  76. Pavlic D, Wingfield MJ, Barber P, Slippers B, Hardy GESJ, Burgess TI (2008) Seven new species of the Botryosphaeriaceae from baobab and other native trees in Western Australia. Mycologia 100:851–866PubMedGoogle Scholar
  77. Pennycook S, Samuels G (1985) Botryosphaeria and Fusicoccum species associated with ripe fruit rot of Actinidia deliciosa (kiwifruit) in New Zealand. Mycotaxon 24:445–458Google Scholar
  78. Pérez CA, Wingfield MJ, Slippers B, Altier NA, Blanchette RA (2010) Endophytic and canker-associated Botryosphaeriaceae occurring on non-native Eucalyptus and native Myrtaceae trees in Uruguay. Fungal Divers 41:53–69Google Scholar
  79. Phillips AJL, Alves A (2009) Taxonomy, phylogeny, and epitypification of Melanops tulasnei, the type species of Melanops. Fungal Divers 38:155–166Google Scholar
  80. Phillips AJL, Alves A, Correia A, Luque J (2005) Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia 97:513–529PubMedGoogle Scholar
  81. Phillips AJL, Alves A, Pennycook SR, Johnston PR, Ramaley A, Akulov A, Crous PW (2008) Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia 21:29–55PubMedGoogle Scholar
  82. Phillips AJL, Crous PW, Alves A (2007) Diplodia seriata, the anamorph of “Botryosphaeria” obtusa. Fungal Divers 25:141–155Google Scholar
  83. Phillips AJL, Fonseca F, Nolasco G (2002) A reassessment of the anamorphic fungus Fusicoccum luteum and description of its teleomorph Botryosphaeria lutea sp. nov. Sydowia 54(1):59–77Google Scholar
  84. Phillips AJL, Oudemans PV, Correia A, Alves A (2006) Characterisation and epitypification of Botryosphaeria corticis, the cause of blueberry cane canker. Fungal Divers 21:141–155Google Scholar
  85. Phillips AJL, Pennycook SR (2004) Taxonomy of Botryosphaeria melanops and its anamorph Fusicoccum advenum. Sydowia 56:68–75Google Scholar
  86. Punithalingam E (1969) Studies on Sphaeropsidales in culture. Mycological Papers 119:1–24Google Scholar
  87. Punithalingam E (1980) Plant diseases attributed to Botryodiplodia theobromae Pat. J. Cramer, VaduzGoogle Scholar
  88. Ramesh C (1988) A new species of Vestergrenia, V. ixorae from Maharashtra. Indian Botanical Reporter 7:105–106Google Scholar
  89. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311PubMedGoogle Scholar
  90. Rehm H (1901) Beiträge zur Pilzflora von Südamerika. XII. Sphaeriales. Hedwigia 40:100–124Google Scholar
  91. Rojas EI, Herre EA, Mejia LC, Arnold AE, Chaverri P, Samuels GJ (2008) Endomelanconiopsis, a new anamorph genus in the Botryosphaeriaceae. Mycologia 100:760–775PubMedGoogle Scholar
  92. Romero AI, Carmarán C (1997) Algunos micromicetes xilófilos de la región subtropical Argentina. I. Misiones. Boletín Sociedad Argentina Botánica 33:59–67Google Scholar
  93. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572PubMedGoogle Scholar
  94. Saccardo PA (1877) Fungi veneti novi vel critici vel Mycologiae Venetae addendi. Michelia:1–72Google Scholar
  95. Sakalidis ML, Hardy GESJ, Burgess TI (2011) Use of the Genealogical Sorting Index (GSI) to delineate species boundaries in the Neofusicoccum parvum-Neofusicoccum ribis species complex. Molecular Phylogenetics and Evolution 60(320):333–344PubMedGoogle Scholar
  96. Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45Google Scholar
  97. Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EB, Kohlmeyer J, Kruys A, Li YM, Lucking R, Lumbsch HT, Marvanova L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJ, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Plata ER, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JH, Yonezawa H, Zhang Y, Spatafora JW (2009a) A class–wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15PubMedGoogle Scholar
  98. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052PubMedGoogle Scholar
  99. Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Mathen PB, Kauff F, Wang Z, Gueidan CC, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, De-Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lücking R, Büdel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers J, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni FO, Spatafora JW (2009b) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239PubMedGoogle Scholar
  100. Shoemaker RA (1964) Conidial states of some Botryosphaeria species on Vitis and Quercus. Can J Bot 42(9):1297–1303Google Scholar
  101. Sivanesan A (1975) Redisposition and descriptions of some Amphisphaeria species and a note on Macrovalsaria. Trans Br Mycol Soc 65:395–402Google Scholar
  102. Sivanesan A (1984) The bitunicate ascomycetes and their anamorphs. J. CramerGoogle Scholar
  103. Slippers B, Burgess T, Wingfield BD, Crous PW, Coutinho TA, Wingfield MJ (2004a) Development of simple sequence repeat markers for Botryosphaeria spp. with Fusicoccum anamorphs. Molecular Ecology Notes 4:675–677Google Scholar
  104. Slippers B, Crous PW, Denman S, Coutinho TA, Wingfield BD, Wingfield MJ (2004b) Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia 96:83–101PubMedGoogle Scholar
  105. Slippers B, Fourie G, Crous PW, Coutinho TA, Wingfield BD, Carnegie AJ, Wingfield MJ (2004c) Speciation and distribution of Botryosphaeria spp. on native and introduced Eucalyptus trees in Australia and South Africa. Stud Mycol 50:343–358Google Scholar
  106. Slippers B, Fourie G, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ (2004d) Multiple gene sequences delimit Botryosphaeria australis sp. nov. from B. lutea. Mycologia 96:1030–1041PubMedGoogle Scholar
  107. Slippers B, Smit WA, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ (2007) Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. Plant Pathol 56:128–139Google Scholar
  108. Slippers B, Wingfield MJ (2007) Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21(2–3):90–106Google Scholar
  109. Smith H, Crous PW, Wingfield MJ, Coutinho TA, Wingfield BD (2001) Botryosphaeria eucalyptorum sp. nov., a new species in the B. dothidea-complex on Eucalyptus in South Africa. Mycologia:277–285Google Scholar
  110. Smith H, Wingfield MJ, Crous PW, Coutinho TA (1996) Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany 62:86–88Google Scholar
  111. Spegazzini C (1908) Hongos de la Yerba Mate. Anales Museo Nacional de Buenos Aires 17:111–141Google Scholar
  112. Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedGoogle Scholar
  113. Stamatakis A, Hoover P, Rougemont J (2008) A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst Biol 57:758–771PubMedGoogle Scholar
  114. Stevens NE (1926) Two species of Physalospora on Citrus and other hosts. Mycologia 18:206–217Google Scholar
  115. Stevens NE (1936) Two species of Physalospora in England. Mycologia 28(4):330–336Google Scholar
  116. Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173PubMedGoogle Scholar
  117. Summerell BA, Laurence MH, Liew ECY, Leslie JF (2010) Biogeography and phylogeography of Fusarium: a review. Fungal Divers 44:3–13Google Scholar
  118. Summerell BA, Leslie JF, Liew ECY, Laurence MH, Bullock S, Petrovic T, Bentley AR, Howard CG, Peterson SA, Walsh JL (2011) Fusarium species associated with plants in Australia. Fungal Divers 46:1–27Google Scholar
  119. Swofford DL (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland MAGoogle Scholar
  120. Sydow H (1914) Beiträge zur Kenntnis der Pilzflora des südlichen Ostindiens - II. Ann Mycol 12(5):484–490Google Scholar
  121. Theissen F, Sydow H (1915) Die Dothideales. Ann Mycol 113:149–746Google Scholar
  122. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876PubMedGoogle Scholar
  123. Tulasne LR (1856) Note sur l’appareil reproducteur multiple des Hypoxylées (DC.) ou Pyrénomycètes (Fr.). vol 5. Annales des Sciences Naturelles BotaniqueGoogle Scholar
  124. Ulloa M, Hanlin RT (2000) Illustrated dictionary of mycology. American Phytopathological Society (APS Press)Google Scholar
  125. Urbez-Torres JR, Peduto F, Striegler RK, Urrea-Romero KE, Rupe JC, Cartwright RD, Gubler WD (2012) Characterization of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fungal Divers 52:169–189Google Scholar
  126. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246PubMedGoogle Scholar
  127. von Arx J, Müller E (1954) Die Gattungen der amerosporen Pyrenomyceten. Beitrage zur Kryptogamenflora der Schweiz 11(1):1–434Google Scholar
  128. von Arx JA (1987) Plant pathogenic fungi. J Cramer (87):288Google Scholar
  129. von Arx JA, Müller E (1975) A re-evaluation of the bitunicate ascomycetes with keys to families and genera. Stud Mycol 9:1–159Google Scholar
  130. von Höhnel F (1909) Fragmente zur Mykologie. Sitzungsb Kaiserl Akad Wiss, Math-Naturwiss Kl 118:813–904Google Scholar
  131. Wakefield EM (1922) Fungi exotici 26. Kew Bulletin of Miscellaneous Information:161–165Google Scholar
  132. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322Google Scholar
  133. Wijayawardene DNN, Mckenzie EHC, Hyde KD (2012) Towards incorporating anamorphic fungi in a natural classification – checklist and notes for 2011. Mycosphere 3(2):157–22Google Scholar
  134. Wikee S, Udayanga D, Crous PW, Chukeatirote E, McKenzie EHC, Bahkali AH, Dai DQ, Hyde KD (2011a) Phyllosticta—an overview of current status of species recognition. Fungal Divers 51:43–61Google Scholar
  135. Wikee S, Wulandari NF, McKenzie EHC, Hyde KD (2011b) Phyllosticta ophiopogonis sp. nov. from Ophiopogon japonicus (Liliaceae). Saudi Journal of Biological Sciences 19(2):13–16Google Scholar
  136. Winter G (1887) Ascomyceten: Gymnoasceen und Pyrenomyceten.Google Scholar
  137. Wong MH, Crous PW, Henderson J, Groenewald JZ, Drenth A (2012) Phyllosticta species associated with freckle disease of banana. Fungal Divers 56:173–187Google Scholar
  138. Wu HX, Schoch CL, Boonmee S, Bahkali AH, Chomnunti P, Hyde KD (2011) A reappraisal of Microthyriaceae. Fungal Divers 51:189–248PubMedGoogle Scholar
  139. Wulandari NF, To-Anun C, Hyde KD, Duong LM, De Gruyter J, Meffert JP, Groenewald JZ, Crous PW (2009) Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Divers 34:23–39Google Scholar
  140. Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Divers 53:1–221Google Scholar
  141. Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3(1):4PubMedGoogle Scholar
  142. Zhou S, Stanosz GR (2001) Relationships among Botryosphaeria species and associated anamorphic fungi inferred from the analyses of ITS and 5.8 S rDNA sequences. Mycologia 93(3):516–527Google Scholar
  143. Zhou XD, Xie YJ, Chen SF, Wingfield MJ (2008) Diseases of eucalypt plantations in China: challenges and opportunities. Fungal Divers 32:1–7Google Scholar

Copyright information

© Mushroom Research Foundation 2012

Authors and Affiliations

  • Jian-Kui Liu
    • 1
    • 2
    • 3
  • Rungtiwa Phookamsak
    • 1
    • 2
  • Mingkhuan Doilom
    • 1
    • 2
  • Saowanee Wikee
    • 1
    • 2
  • Yan-Mei Li
    • 3
  • Hiran Ariyawansha
    • 1
    • 2
  • Saranyaphat Boonmee
    • 1
    • 2
  • Putarak Chomnunti
    • 1
    • 2
  • Dong-Qin Dai
    • 1
    • 2
  • Jayarama D. Bhat
    • 1
    • 2
    • 4
  • Andrea I. Romero
    • 5
  • Wen-Ying Zhuang
    • 6
  • Jutamart Monkai
    • 1
    • 2
  • E. B. Gareth Jones
    • 7
  • Ekachai Chukeatirote
    • 2
  • Thida Win Ko Ko
    • 1
  • Yong-Chang Zhao
    • 8
  • Yong Wang
    • 9
  • Kevin D. Hyde
    • 1
    • 2
    • 3
  1. 1.Institute of Excellence in Fungal ResearchMae Fah Luang UniversityChiang RaiThailand
  2. 2.School of ScienceMae Fah Luang UniversityChiang RaiThailand
  3. 3.International Fungal Research & Development CentreThe Research Institute of Resource Insects, Chinese Academy of ForestryKunmingChina
  4. 4.Formerly at Department of BotanyGoa UniversityGoaIndia
  5. 5.Prhideb-Conicet, Deptomento Cs. Biológicas, Facultad de Cs. Exactas y Naturales (UBA)Ciudad UniversitariaBuenos AiresArgentina
  6. 6.State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
  7. 7.Institute of Ocean and Earth Sciences (IOES), C308, Institute of Postgraduate Studies BuildingUniversity of MalayaKuala LumpurMalaysia
  8. 8.Macrofungi Research Lab, Institute of Biotechnology & Germplasmic ResourceYunnan Academy of Agricultural ScienceKunmingChina
  9. 9.Department of Plant PathologyAgriculture College, Guizhou UniversityGuiyangChina

Personalised recommendations