Fungal Diversity

, Volume 57, Issue 1, pp 85–147 | Cite as

Phylogeny and taxonomy of Ophiognomonia (Gnomoniaceae, Diaporthales), including twenty-five new species in this highly diverse genus

  • Donald M. Walker
  • Lisa A. Castlebury
  • Amy Y. Rossman
  • Luis C. Mejía
  • James F. White


Species of Ophiognomonia are leaf-inhabiting endophytes, pathogens, and saprobes that infect plants in the families Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. Based on extensive collecting, this species-rich genus is now known to have a world wide distribution in primarily temperate areas, although some species are known from the subtropics. Analyses of DNA sequences from three markers including guanine nucleotide-binding protein subunit beta-like protein (MS204), translation elongation factor 1α (tef-1α), and the ITS region including ITS1, 5.8 S rDNA and ITS2 regions (ITS) were used to define phylogenetic species in Ophiognomonia. Host plant association correlated with these species. Twenty-five new species of Ophiognomonia and two new combinations are proposed with descriptions and illustrations. In addition, descriptions and illustrations are provided for 12 other species of Ophiognomonia. A key is provided to the 45 currently accepted species of Ophiognomonia. The disposition of additional names in Ophiognomonia is also discussed.


Birch foliar pathogen Butternut canker GCPSR Genealogical sorting index Host associations MS204 Multilocus phylogeny Walnut anthracnose and leaf blotch 



This project was funded by the National Science Foundation Partnerships for Enhancing Expertise in Taxonomy (NSF 03–28364). Additional funding for field work by DMW was received through Rutgers University, New Brunswick, NJ, from the C. Reed Funk Student Award by the Department of Plant Biology and Pathology, also the Backus Award and Everett Lutrell Mentor Student Travel Award from the Mycological Society of America. DMW also thanks Jo Anne Crouch and Adam Bazinet for assistance with data analyses; Kentaro Hosaka, Shinobu Inoue, Takao Kobayashi, Tsuyoshi Hosoya, Yousuke Degawa for hosting a collecting trip to Japan and Yuuri Hirooka for coordinating the visit; Christian Feuillet and Drew Minnis for discussions about nomenclature; Ryan Vo and Tunesha Phipps for technical assistance; and Larissa Vasilyeva, Alain Gardiennet, Yannick Mourgues, Marc Chovillon, Jacques Fornier, and Mikhail Sogonov for collection of fresh specimens for examination.

Supplementary material

13225_2012_200_MOESM1_ESM.pdf (21 kb)
ESM 1 (PDF 21 kb)


  1. Aguileta G, Marthey S, Chiapello H, Lebrun M-H, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T (2008) Assessing the performance of single-copy genes for recovering robust phylogenies. Syst Biol 57(4):613–627. doi: 10.1080/10635150802306527 PubMedCrossRefGoogle Scholar
  2. Anderson RL, LaMadeleine LA (1978) The distribution of butternut decline in the eastern United States. Forest Survey Report USDA Forest Service, p. 5Google Scholar
  3. Avise JC, Ball RM Jr (1990) Principles of genealogical concordance in species concepts and biological taxonomy. In: Oxford surveys in evolutionary biology, vol 7. Oxford Univ. Press, OxfordGoogle Scholar
  4. Barr ME (1978) The diaporthales in North America with emphasis on Gnomonia and its segregates. Mycol Mem 7:1–232Google Scholar
  5. Barrett DK, Pearce RB (1981) Giant leaf blotch disease of sycamore (Acer pseudoplatanus) in Britain. Trans Brit Mycol Soc 76:317–345CrossRefGoogle Scholar
  6. Behdad E (1991) Plant protection encyclopedia of Iran: pests, diseases, and weeds. Yad-boud Publisher, IsfahanGoogle Scholar
  7. Belisario A, Scotton M, Santori A, Onofri S (2008) Variability in the Italian population of Gnomonia leptostyla, homothallism and resistance of Juglans species to anthracnose. For Pathol 38(2):129–145. doi: 10.1111/j.1439-0329.2007.00540.x CrossRefGoogle Scholar
  8. Berry FH (1981) Walnut anthracnose forest insect & disease leaflet 85. US Department of Agriculture, Forest Service, Northern Area State & Private Forestry, BroomallGoogle Scholar
  9. Broders KD, Boland GJ (2011) Reclassification of the butternut canker fungus, Sirococcus clavigignenti-juglandacearum, into the genus Ophiognomonia. Fungal Biol 115(1):70–79PubMedCrossRefGoogle Scholar
  10. Broughton RE, Harrison RG (2003) Nuclear gene genealogies reveal historical, demographic and selective factors associated with speciation in field crickets. Genetics 163(4):1389–1401PubMedGoogle Scholar
  11. Butin H, Wulf A (1987) Asteroma pseudoplatani sp. nov., anamorph of Pleuroceras pseudoplatani (v. Tubeuf) Monod. Sydowia 40:38–41Google Scholar
  12. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552PubMedCrossRefGoogle Scholar
  13. Cummings MP, Neel MC, Shaw KL (2008) A genealogical approach to quantifying lineage divergenece. Evolution 62(9):2411–2422. doi: 10.1111/j.1558-5646.2008.00442.x PubMedCrossRefGoogle Scholar
  14. Damm U, Crous PW, Fourie PH (2007) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99(5):664–680. doi: 10.3852/mycologia.99.5.664 PubMedCrossRefGoogle Scholar
  15. Dettman JR, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57(12):2703–2720. doi: 10.1111/j.0014-3820.2003.tb01514.x PubMedGoogle Scholar
  16. Eriksson OE (1992) The non-lichenized pyrenomycetes of Sweden. Btjtryck, Lund, p 208Google Scholar
  17. Green S (2004) Fungi associated with shoots of silver birch (Betula pendula) in Scotland. Mycol Res 108:1327–1336PubMedCrossRefGoogle Scholar
  18. Green S, Castlebury LA (2007) Connection of Gnomonia intermedia to Discula betulina and its relationship to other taxa in Gnomoniaceae. Mycol Res 111:62–69PubMedCrossRefGoogle Scholar
  19. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66(4):411–453PubMedCrossRefGoogle Scholar
  20. Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56(8):1557–1565. doi: 10.1111/j.0014-3820.2002.tb01467.x PubMedGoogle Scholar
  21. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  22. Johnson LA, Soltis DE (1998) Assessing congruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants 2. Kluwer, U.S.A., pp 287–348Google Scholar
  23. Juhasova G, Ivanova H, Spisak J (2006) Biology of fungus Gnomonia leptostyla in agro-ecological environments of Slovakia. Mikol Fitopatol 40:538–547Google Scholar
  24. Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae (Graminae). Syst Bot 21:321–347CrossRefGoogle Scholar
  25. Kobayashi T (1970) Taxonomic studies of Japanese Diaporthaceae with special reference to their life-histories. Bulletin of the Government Forest Experiment Station 226:1–242Google Scholar
  26. Letcher PM, Powell MJ, Viusent MC (2008) Rediscovery of an unusual chytridiaceous fungus new to the order Rhizophydiales. Mycologia 100(2):325–334. doi: 10.3852/mycologia.100.2.325 PubMedCrossRefGoogle Scholar
  27. Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae. Syst Biol 45:524–545CrossRefGoogle Scholar
  28. Mejía LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2008) Phylogenetic placement and taxonomic review of the genus Cryptosporella and its synonyms Ophiovalsa and Winterella (Gnomoniaceae, Diaporthales). Mycol Res 112(1):23–35PubMedCrossRefGoogle Scholar
  29. Mejía L, Rossman A, Castlebury L, Yang Z, White J (2011a) Occultocarpon, a new monotypic genus of Gnomoniaceae on Alnus nepalensis from China. Fungal Divers 52(1):99–105. doi: 10.1007/s13225-011-0108-y CrossRefGoogle Scholar
  30. Mejia LC, Rossman AY, Castlebury LA, White JF Jr (2011b) New species, phylogeny, host-associations, and geographic distribution of the genus Cryptosporella (Gnomoniaceae, Diaporthales). Mycologia 103:379–399. doi: 10.3852/10-134 CrossRefGoogle Scholar
  31. Mejía LC, Castlebury LA, Rossman AY, Sogonov MV, White JF (2011c) A systematic account of the genus Plagiostoma (Gnomoniaceae, Diaporthales) based on morphology, host-associations, and a four-gene phylogeny. Stud Mycol 68(1):211–235. doi: 10.3114/sim.2011.68.10 CrossRefGoogle Scholar
  32. Monod M (1983) Monographie taxonomique des Gnomoniaceae (Ascomycétes de l’ordre des Diaporthales I). Beihefte zur Sydowia 9:1–315Google Scholar
  33. Neely D, Black WM (1976) Anthracnose of black walnuts in the Midwest. Plant Dis Rep 60:519–521Google Scholar
  34. Nixon KC, Carpenter JM (1993) On outgroups. Cladistics 9:413–426CrossRefGoogle Scholar
  35. O’Donnell K, Ward TJ, Geiser DM, Corby Kistler H, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41(6):600–623PubMedCrossRefGoogle Scholar
  36. Otani Y (1995) Mycological Flora of Japan. Vol III Ascomycotina No 3 Sordariales, Diaporthales Tokyo, Yokendo LTD, p. 310Google Scholar
  37. Paulus B, Gadek P, Hyde K (2007) Successional patterns of microfungi in fallen leaves of Ficus pleurocarpa (Moraceae) in an Australian tropical rain forest. Biotropica 38:42–51Google Scholar
  38. Pennycook SR (2007) Discula betulae comb. nov., correct name for the anamorph of Gnomonia intermedia. Mycotaxon 101:361–364Google Scholar
  39. Pringle A, Baker DM, Platt JL, Wares JP, Latgé JP, Taylor JW (2005) Cryptic Speciation in the Cosmopolitan and Clonal Human Pathogenic Fungus Aspergillus Fumigatus. Evolution 59(9):1886–1899. doi: 10.1111/j.0014-3820.2005.tb01059.x PubMedGoogle Scholar
  40. Raja HA, Miller AN, Shearer CA (2008) Freshwater ascomycetes: Aquapoterium pinicola, a new genus and species of Helotiales (Leotiomycetes) from Florida. Mycologia 100(1):141–148. doi: 10.3852/mycologia.100.1.141 PubMedCrossRefGoogle Scholar
  41. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. doi: 10.1093/bioinformatics/btg180 PubMedCrossRefGoogle Scholar
  42. Rosenberg NA, Harrison R (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57(7):1465–1477. doi: 10.1554/03-012 PubMedGoogle Scholar
  43. Salahi S, Javan Nikkhah M, Jamshidi S (2009) Study on population structure of Gnomonia leptostyla, causal agent of walnut anthracnose in East Azarbaijan province, Iran. New Agric Sci J 3:53–68Google Scholar
  44. Sarver BAJ, Ward TJ, Gale LR, Broz K, Corby Kistler H, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48(12):1096–1107PubMedCrossRefGoogle Scholar
  45. Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23:35–40PubMedCrossRefGoogle Scholar
  46. Sogonov MV, Castlebury LA, Rossman AY, White JF (2007) The type of species of Apiognomonia, Apiognomonia veneta, with its Discula anamorph is distinct from Apiognomonia errabunda. Mycol Res 111:693–709Google Scholar
  47. Sogonov MV, Castlebury LA, Rossman AY, Mejía LC, White JF (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Stud Mycol 62:1–77Google Scholar
  48. Spatafora JW, Sung G-H, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lucking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Budel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98(6):1018–1028. doi: 10.3852/mycologia.98.6.1018 PubMedCrossRefGoogle Scholar
  49. Sullivan J (1996) Combining data with different distributions of among-site rate variation. Syst Biol 45(3):375–380. doi: 10.1093/sysbio/45.3.375 CrossRefGoogle Scholar
  50. Swofford DL (2002) PAUP 4.0b10: phylogenetic analysis using parsimony. Sinauer Associates, USAGoogle Scholar
  51. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  52. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564–577. doi: 10.1080/10635150701472164 PubMedCrossRefGoogle Scholar
  53. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31(1):21–32PubMedCrossRefGoogle Scholar
  54. Teodoro NG (1937) An enumeration of Philippine fungi. Techn Bull Dept Agric Comm Manila 4:1–585Google Scholar
  55. Townsend JP (2007) Profiling phylogenetic informativeness. Syst Biol 56(2):222–231. doi: 10.1080/10635150701311362 PubMedCrossRefGoogle Scholar
  56. Townsend JP, Leuenberger C (2011) Taxon sampling and the optimal rates of evolution for phylogenetic inference. Syst Biol. doi: 10.1093/sysbio/syq097
  57. von Höhnel F (1919) Mycologische fragmenta. Ann Mycol 17:114–133Google Scholar
  58. Walker J (1980) Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon 11:1–129Google Scholar
  59. Walker DM, Castlebury LA, Rossman AY, Sogonov MV, White JF Jr (2010) Systematics of the genus Gnomoniopsis (Gnomoniaceae, Diaporthales) based on a three gene phylogeny, host associations, and morphology. Mycologia 102(6):1479–1496. doi: 10.3852/10-002 PubMedCrossRefGoogle Scholar
  60. Walker DM, Castlebury LA, Rossman AY, White JF Jr (2012) New molecular markers for fungal phylogenetics: two genes for species-level systematics in the Sordariomycetes (Ascomycota). Mol Phylogenet Evol 64:500–512PubMedCrossRefGoogle Scholar
  61. Wild AL, Maddison DR (2008) Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Mol Phylogenet and Evol 48(3):877–891CrossRefGoogle Scholar
  62. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin, USAGoogle Scholar

Copyright information

© Mushroom Research Foundation 2012

Authors and Affiliations

  • Donald M. Walker
    • 1
  • Lisa A. Castlebury
    • 2
  • Amy Y. Rossman
    • 2
  • Luis C. Mejía
    • 3
  • James F. White
    • 4
  1. 1.Department of Natural SciencesThe University of FindlayFindlayUSA
  2. 2.Systematic Mycology & Microbiology Laboratory, USDA Agricultural Research ServiceBeltsvilleUSA
  3. 3.Smithsonian Tropical Research InstituteBalboaRepublic of Panama
  4. 4.Department of Plant Biology and PathologyRutgers UniversityNew BrunswickUSA

Personalised recommendations