Fungal Diversity

, Volume 58, Issue 1, pp 103–126

European Species of Hebeloma Section Theobromina

  • Ursula Eberhardt
  • Henry J. Beker
  • Jan Vesterholt
  • Karolina Dukik
  • Grit Walther
  • Jordi Vila
  • Samantha Fernández Brime
Article

Abstract

This paper addresses section Theobromina within the genus Hebeloma (Agaricales). We recognise seven European species within this section, three of which are described as new: Hebeloma alboerumpens, H. griseopruinatum and H. parvicystidiatum. The first two of these species appear to be ectomycorrhizal with Cistaceae: Cistus and Helianthemum. Hebeloma parvicystidiatum is more likely to be in mycorrhizal association with Quercus spp. We also provide a key to the European species within sect. Theobromina and an updated key of known Hebeloma associates of Cistus. Molecular analyses based on multiple loci further illustrate the distinctness of the newly described taxa and provide molecular evidence, supporting the morphological evidence, for the relationship that exists among species of this section. The ITS is the only one from the sequenced loci that, alongside with morphology, distinguishes among all of the species of sect. Theobromina. The section gains most of its molecular support from the MCM7 locus, followed by RPB2.

Keywords

Host specificity Fungi Hebeloma plesiocistum Hebeloma theobrominum Hebeloma vesterholtii DNA barcode 

References

  1. Aanen DK, Kuyper TW (1999) Intercompatibility tests in the Hebeloma crustuliniforme complex in northwestern Europe. Mycologia 91:783–795CrossRefGoogle Scholar
  2. Aanen DK, Kuyper TK, Boekhout T, Hoekstra RF (2000a) Phylogenetic relationships in the genus Hebeloma based on ITS1 and 2 sequences, with special emphasis on the Hebeloma crustuliniforme complex. Mycologia 92:269–281CrossRefGoogle Scholar
  3. Aanen DK, Kuyper TW, Mes THM, Hoekstra RF (2000b) The evolution of reproductive isolation in ectomycorrhizal Hebeloma crustuiniforme aggregate (basidiomycetes) in northwestern Europe: a phylogenetic approach. Evolution 54:1192–1206PubMedGoogle Scholar
  4. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  5. Eberhardt U (2012) Methods for DNA barcoding fungi. In: Kress JW, Erickson DL (eds) DNA barcodes: methods and protocols. Humana Press, San Diego, pp 183–206. doi:10.1007/978-1-61779-591-6_9
  6. Eberhardt U, Beker HJ (2010) Hebeloma vesterholtii, a new species in section Theobromina. Mycol Progress 9:215–223. doi:10.1007/s11557-009-0627-z CrossRefGoogle Scholar
  7. Eberhardt U, Beker HJ, Vila J, Vesterholt J, Llimona X, Gadjieva R (2009) Hebeloma species associated with Cistus. Mycol Res 113:153–162. doi:10.1016/j.mycres.2008.09.007 PubMedCrossRefGoogle Scholar
  8. Flot J-F, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Molecular Ecology Notes 6:627–630. doi:10.1111/j.1471-8286.2006.01355.x CrossRefGoogle Scholar
  9. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  10. Gonzalez P, Labarére J (1998) Sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6, and V9 domains reveal highly species-specific variations within the genus Agrocybe. Appl Environ Microbiol 64:4149–4160PubMedGoogle Scholar
  11. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. doi:10.1093/nar/gki198 PubMedCrossRefGoogle Scholar
  12. Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenet Evol 25:138–156CrossRefGoogle Scholar
  13. Liu YL, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808PubMedCrossRefGoogle Scholar
  14. Maddison WP, Maddison DR (2011) Mesquite: A modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org
  15. Marmeisse R, Gryta H, Fraisinet-Tachet L, Gay G, Debaud JC (1999) Hebeloma. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal Fungi - Key Genera in Profile. Springer, Berlin, pp 89–127Google Scholar
  16. Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Molecular Phylogenet Evol 35:1–20. doi:10.1016/j.ympev.2004.11.014 CrossRefGoogle Scholar
  17. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp 1 - 8. doi:10.1109/GCE.2010.5676129
  18. Moser M (1985) Beiträge zur Kenntnis der Gattung Hebeloma. II. Sydowia 38:171–177Google Scholar
  19. Mouhamadou B, Carriconde F, Gryta H, Jargeat P, Manzi S, Gardes M (2008) Molecular evolution of mitochondrial ribosomal DNA in the fungal genus Tricholoma: barcoding implications. Fungal Genet Biol 45:1219–1226. doi:10.1016/j.fgb.2008.06.006 PubMedCrossRefGoogle Scholar
  20. Ortega A, Esteve-Raventόs F (1999) Estudios sobre el género Hebeloma en España Peninsular. III. Un estudio comparativo entre H. truncatum, H truncatum var. pruinosum y H. erumpens. Micol Veg Mediterranea 14:151–158Google Scholar
  21. Quadraccia L (1987) Recherches sur Hebeloma (Agaricales, Cortinariaceae). I Quelques Notes Taxonomiques et nomenclaturales. Mycotaxon 30:301–318Google Scholar
  22. Raja HA, Schoch CL, Hustad VP, Shearer CA, Miller AN (2011) Testing the phylogenetic utility of MCM7 in the Ascomycota. MycoKeys 1:63–94. doi:10.3897/mycokeys.1.1966 CrossRefGoogle Scholar
  23. Rambaut A (2002) Se-Al. Sequence alignment editor version 2.0a11, Department of Zoology, University of Oxford. http://tree.bio.ed.ac.uk/software/seal/
  24. Rambaut A (2009) Tree figure drawing tool version 1.3.1. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/
  25. Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634CrossRefGoogle Scholar
  26. Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23:35–40. doi:10.3767/003158509X470602 PubMedCrossRefGoogle Scholar
  27. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241–6246. doi:10.1073/pnas.1117018109 PubMedCrossRefGoogle Scholar
  28. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics Applications Note 22:2688–2690. doi:10.1093/bioinformatics/btl446 Google Scholar
  29. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771. doi:10.1080/10635150802429642 PubMedCrossRefGoogle Scholar
  30. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. doi:10.1080/10635150701477825 PubMedCrossRefGoogle Scholar
  31. Taylor AFS, Hills A, Simonini G, Both EE, Eberhardt U (2006) Detection of species within the Xerocomus subtomentosus complex in Europe using rDNA-ITS sequences. Mycol Res 110:276–287. doi:10.1016/j.mycres.2005.11.013 PubMedCrossRefGoogle Scholar
  32. Taylor AFS, Hills A, Simonini G, Muñoz JA, Eberhardt U (2007) Xerocomus silwoodensis sp. nov., a new species within the European X. subtomentosus complex. Mycol Res 111:403–408. doi:10.1016/j.mycres.2007.01.014 PubMedCrossRefGoogle Scholar
  33. Vesterholt J (2004) The identity of Hebeloma fastibile, the type species of Hebeloma. Annali Micol AGMT 1:53–63Google Scholar
  34. Vesterholt J (2005) The Genus Hebeloma. [Fungi of Northern Europe Volume 3] Danish Mycological Society, CopenhagenGoogle Scholar
  35. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several species of Cryptococus. J Bacteriol 172:4238–4246PubMedGoogle Scholar
  36. White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand H, Sninsky JS, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar

Copyright information

© Mushroom Research Foundation 2012

Authors and Affiliations

  • Ursula Eberhardt
    • 1
  • Henry J. Beker
    • 2
  • Jan Vesterholt
    • 3
  • Karolina Dukik
    • 1
  • Grit Walther
    • 4
  • Jordi Vila
    • 5
  • Samantha Fernández Brime
    • 5
  1. 1.CBS-KNAW Fungal Biodiversity CentreUtrechtNetherlands
  2. 2.Rue Père de Deken 19BruxellesBelgium
  3. 3.Natural History Museum of DenmarkCopenhagen K.Denmark
  4. 4.Microbial Resource Collection, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute and Institute of Microbiology, Department of Microbiology and Molecular BiologyUniversity of JenaJenaGermany
  5. 5.Department Biologia Vegetal (Botànica), Fac. BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations