Fungal Diversity

, Volume 56, Issue 1, pp 1–29

Medicinal mushrooms in prevention and control of diabetes mellitus



Diabetes mellitus is a life-threatening chronic metabolic disease caused by lack of insulin and/or insulin dysfunction, characterized by high levels of glucose in the blood (hyperglycemia). Millions worldwide suffer from diabetes and its complications. Significantly, it has been recognized that type 2 diabetes is an important preventable disease and can be avoided or delayed by lifestyle intervention. Presently, there are many chemical and biochemical hypoglycemic agents (synthetic drugs), that are used in treating diabetes and are effective in controlling hyperglycemia. However, as they may have harmful side-effects and fail to significantly alter the course of diabetic complications, natural anti-diabetic drugs from medicinal plants have attracted a great deal of attention. Medicinal mushrooms have been valued as a traditional source of natural bioactive compounds over many centuries and have been targeted as potential hypoglycemic and anti-diabetic agents. Bioactive metabolites including polysaccharides, proteins, dietary fibres, and many other biomolecules isolated from medicinal mushrooms and their cultured mycelia have been shown to be successful in diabetes treatment as biological anti-hyperglycemic agents. In this review we discuss the biological nature of diabetes and, in particular, explore some promising mushrooms that have experimental anti-diabetic properties, preventing or reducing the development of diabetes mellitus. The importance of medicinal mushrooms as agents of medical nutrition therapy and how their metabolites can be used as supportive candidates for prevention and control of diabetes is explored. Future prospects for this field of study and the difficulties and constraints that might affect the development of rational drug products from medicinal mushrooms are discussed.


Medicinal mushrooms Diabetes mellitus Anti-diabetic agents Anti-hyperglycemic agents Bioactive metabolites Mushroom supplementation Diabetes prevention 


  1. Abdullah N, Ismail S, Aminudin N, Shuib AS, Lau BF (2012) evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid Based Complement Alternat Med 464238:12 p. doi:10.1155/2012/464238
  2. Abraham WR (2001) Bioactive Sesquiterpenes produced by fungi: are they useful for humans as well? Curr Med Chem 8:583–606PubMedCrossRefGoogle Scholar
  3. Adachi H, Fujiwara Y, Ishii N (1998) Effects of oxygen on protein carbonyl and aging in Caenorhabditis elegans mutants with long (age-1) and short (mev-1) life spans. J Gerontol 53:B240–B244Google Scholar
  4. Adotey G, Quarcoo A, Holliday JC, Fofie S, Saaka B (2011) Effect of immunomodulating and antiviral agent of medicinal mushrooms (Immune Assist 24/7TM) on CD4+ T-lymphocyte counts of HIV-infected patients. Int J Med Mushr 13:109–113CrossRefGoogle Scholar
  5. Agardh CD, Stenram U, Torffvit O, Agardh E (2002) Effects of inhibition of glycation and oxidative stress on the development of diabetic nephropathy in rats. J Diabetes Complicat 16:395–400PubMedCrossRefGoogle Scholar
  6. Agarwal S, Sohal RS (1993) Relationship between aging and susceptibility to protein oxidative damage. Biochem Bioph Res Comm 194:1203–1206CrossRefGoogle Scholar
  7. Agrawal RP, Chopra A, Lavekar GS, Padhi MM, Srikanth N, Ota S, Jain S (2010) Effect of oyster mushroom on glycemia, lipid profile and quality of life in type 2 diabetic patients. Australian J Med Herbalism 22:50–54Google Scholar
  8. Ajith TA, Janardhanan KK (2007) Indian medicinal mushrooms as a source of antioxidant and antitumor agents. J Clin Biochem Nutr 40:157–162CrossRefGoogle Scholar
  9. Aksenova MV, Aksenov MY, Carney JM, Butterfield DA (1998) Protein oxidation and enzyme activity decline in old brown Norway rats are reduced by dietary restriction. Mech Ageing and Develop 100:157–168CrossRefGoogle Scholar
  10. Alarcón J, Aguila S, Arancibia-Avila P, Fuentes O, Zamorano-Ponce E, Hernández M (2003) Production and purification of statins from Pleurotus ostreatus (Basidiomycetes) strains. Z Naturforsch C 58:62–64PubMedGoogle Scholar
  11. Alexandre J, Kahatt C, Cvitkovic FB, Faivre S, Shibata S et al (2007) A phase I and pharmacokinetic study of irofulven and capecitabine administered every 2 weeks in patients with advanced solid tumors. Invest New Drug 25:453–462CrossRefGoogle Scholar
  12. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16CrossRefGoogle Scholar
  13. American Diabetes Association (2008) Economic costs of diabetes in the U.S. in 2007. Diabetes Care 31:596–615CrossRefGoogle Scholar
  14. American Diabetes Association (2011) Standards of medical care in diabetes - 2011. Diabetes Care 34:S11–S61CrossRefGoogle Scholar
  15. Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67(4):188–205PubMedCrossRefGoogle Scholar
  16. Andújar-Plata P, Pi-Sunyer X, Laferrère B (2012) Metformin effects revisited. Diabetes Res Clin Pract 95:1–9PubMedCrossRefGoogle Scholar
  17. Anon (2008) Canadian Diabetes Association 2008 clinical practice guidelines for the prevention and management of diabetes in Canada. Canadian J Diabetes 32:S1–S201Google Scholar
  18. Anon (2009) A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 360:2503–2515CrossRefGoogle Scholar
  19. Anon (2010) Position of the American Dietetic Association: integration of medical nutrition therapy and pharmacotherapy. J Am Diet Assoc 110:950–956CrossRefGoogle Scholar
  20. Anon (2011) Total Health Life 2005. “High Blood Sugar”.Total Health Institute
  21. Arathuzik GG, Goebel-Fabbri AE (2011) Nutrition therapy and the management of obesity and diabetes: an update. Curr Diab Rep 11:106–110PubMedCrossRefGoogle Scholar
  22. Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700PubMedCrossRefGoogle Scholar
  23. Avogaro A (2012) Treating diabetes today with gliclazide MR: a matter of numbers. Diabetes Obes Metab 14:14–19PubMedCrossRefGoogle Scholar
  24. Ayaz FA, Chuang LT, Torun H, Colak A, Sesli E, Presley J (2011) Fatty acid and amino acid compositions of selected wild-edible mushrooms consumed in Turkey. Int J Food Sci Nutr 629:328–335CrossRefGoogle Scholar
  25. Badole SL, Bodhankar SL (2007) Interaction of aqueous extract of Pleurotus pulmonarius (Fr.) Quel.-Champ with acarbose in alloxan induced diabetic mice. J Appl Biomed 5:157–166Google Scholar
  26. Badole SL, Shah SN, Patel NM, Thakurdesai PA, Bodhankar SL (2006) Hypoglycemic activity of aqueous extract of Pleurotus pulmonarius in alloxan-induced diabetic mice. Pharm Biol 44:421–425CrossRefGoogle Scholar
  27. Balon TW, Jasman AP, Zhu JS (2002) A fermentation product of Cordyceps sinensis increases whole-body insulin sensitivity in rats. J Altern Complem Med 8:315–323CrossRefGoogle Scholar
  28. Bao X, Duan J, Fang X, Fang J (2001) Chemical modifications of the (1→3)-α-D-glucan from spores of Ganoderma lucidum and investigation of their physicochemical properties and immunological activity. Carbohyd Res 336:127–140CrossRefGoogle Scholar
  29. Barra NG, Chew MV, Holloway AC, Ashkar AA (2012) Interleukin-15 treatment improves glucose homeostasis and insulin sensitivity in obese mice. Diabetes Obes Metab 14:190–193PubMedCrossRefGoogle Scholar
  30. Bastami MS, Bohari SPM, Har WM, Wahab MN, Rahmani AS et al (2007) Hypoglycemic, insulinotrophic and cytotoxic activity of three species of Ganoderma. Malaysian J Sci 26(2):41–46Google Scholar
  31. Bazzano LA, Li TY, Joshipura KJ, Hu FB (2008) Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 31:1311–1317PubMedCrossRefGoogle Scholar
  32. Beck-Nielsen H, Henriksen JE, Vaag A, Hother-Nielsen OH (1995) Pathophysiology of non-insulin-dependent diabetes mellitus (NIDDM). Diabetes Res Clin Pr 28:13–25CrossRefGoogle Scholar
  33. Beluhan S, Ranogajec A (2011) Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem 124:1076–1082CrossRefGoogle Scholar
  34. Ben-Haroush A, Yogev Y, Hod M (2004) Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabetes Med 21:103–113CrossRefGoogle Scholar
  35. Bisbal C, Lambert K, Avignon A (2010) Antioxidants and glucose metabolism disorders. Curr Opin Clin Nutr Metab Care 13:439–446PubMedCrossRefGoogle Scholar
  36. Boonyanuphap J, Hansawasdi C (2010) Spatial distribution of β-glucan containing wild mushroom communities in subtropical dry forest, Thailand. Fungal Divers 46:29–42CrossRefGoogle Scholar
  37. Brennan MA, Derbyshire E, Tiwari BK, Brennan CS (2012) Enrichment of extruded snack products with coproducts from chestnut mushroom (Agrocybe aegerita) production: interactions between dietary fiber, physicochemical characteristics, and glycemic load. J Agric Food Chem 60:4396–4401PubMedCrossRefGoogle Scholar
  38. Brun JF, Traverso M, Fédou C, Renard E, Mercier J (2009) Reassessing two myths about exercise in type-1 diabetics: The hyperglycemic threshold at 250 mg/dL counter-indicating exercise and the “glucose pulse”. Science & Sports 24:108–110CrossRefGoogle Scholar
  39. Brun JF, Marti B, Fédou C, Farré A, Renard E, Mercier J (2012) Two parameters statistically explain blood glucose decrease during exercise at steady state in type 1 diabetics: pre-exercise blood glucose and insulinemia. Science & Sports 27:111–114CrossRefGoogle Scholar
  40. Cangeri Di Naso F, Noronha de Mello R, Bona S, Dias AS, Porawski M, de Barros Balcao Ferraz A, Richter MF, Possa Marroni N (2010) Effect of Agaricus blazei Murill on the pulmonary tissue of animals with streptozotocin-induced diabetes. Exp Diabetes Res Article ID 543926, 8 p. doi:10.1155/2010/543926
  41. Capes SE, Hunt D, Malmberg K, Pathak P, Gerstein HC (2001) Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: a systematic overview. Stroke 32:2426–2432PubMedCrossRefGoogle Scholar
  42. CDC Centers for Disease Control and Prevention (2011) Diabetes successes and opportunities for population-based prevention and control; at a glance 2011.
  43. Cha JY, Jun BS, Kim JW, Park SH, Lee CH, Cho YS (2006) Hypoglycemic effects of fermented Chaga mushroom (Inonotus obliquus) in the diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Food Sci Biotechnol 15:739–745Google Scholar
  44. Chandra M, Chandra N, Agrawal R, Kumar A, Ghatak A, Pandey VC (1994) The free radical system in ischemic heart disease. Int J Cardiol 43:121–125PubMedCrossRefGoogle Scholar
  45. Chang ST (1999) Global impact of edible and medicinal mushrooms on human welfare in the 21st century: nongreen revolution. Int J Med Mushr 1:1–8CrossRefGoogle Scholar
  46. Chang ST, Mshigeni KE (2000) Ganoderma lucidum-Paramount among medicinal mushrooms. Discov Innov 12:97–101Google Scholar
  47. Chaufan C, Davis M, Constantino S (2011) The twin epidemics of poverty and diabetes: understanding diabetes disparities in a low-income Latino and immigrant neighborhood. J Commun Health 36:1032–1043CrossRefGoogle Scholar
  48. Chen SJ, Jin SY (1992) Summary of research of hosts of Cordyceps sinensis in China. Shizhen Guoyao Yanju 3:37–39Google Scholar
  49. Chen J, Seviour R (2007) Medicinal importance of fungal β-(1→3), (1→6)-glucans. Mycol Res 111:635–652PubMedCrossRefGoogle Scholar
  50. Chen H, Lu X, Qu Z, Wang Z, Zhang L (2010) Glycosidase inhibitory activity and antioxidant properties of a polysaccharide from mushroom Inonotus obliquus. J Food Biochem 34:178–191CrossRefGoogle Scholar
  51. Chen G, Luo YC, Ji BP, Li B, Su W, Xiao ZL, Zhang GZ (2011) Hypocholesterolemic effects of Auricularia auricula ethanol extract in ICR mice fed a cholesterol-enriched diet. J Food Sci Technol-Mysore 48:692–698CrossRefGoogle Scholar
  52. Chen J, Mao D, Yong Y, Li J, Wei H, Lu L (2012) Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food Chem 130:687–694CrossRefGoogle Scholar
  53. Cheng AYY, Fantus IG (2005) Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can Med Assoc J 172:213–226CrossRefGoogle Scholar
  54. Cheng CR, Yue QX, Wu ZY, Song XY, Tao SJ, Wu XH, Xu PP, Liu X, Guan SH, Guo DA (2010) Cytotoxic triterpenoids from Ganoderma lucidum. Phytochem 71:1579–1585CrossRefGoogle Scholar
  55. Cheng YW, Chen YI, Tzeng CY, Chen HC, Tsai CC, Lee YC, Lin JG, Lai YK, Chang SL (2012a) Extracts of Cordyceps militaris lower blood glucose via the stimulation of cholinergic activation and insulin secretion in normal rats. Phytother Res (Published Online). doi:10.1002/ptr.3709
  56. Cheng M, Li BY, Li XL, Wang Q, Zhang JH, Jing XJ, Gao HQ (2012b) Correlation between serum lactadherin and pulse wave velocity and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 95:125–131PubMedCrossRefGoogle Scholar
  57. Cheung PC (2008) Mushrooms as functional food. John Wiley and Sons, New JerseyCrossRefGoogle Scholar
  58. Chinner S, Scherbaum WA, Bornstein SR, Barthel A (2005) Molecular mechanisms of insulin resistance. Diabetic Med 22:674–682CrossRefGoogle Scholar
  59. Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, Bae SH, Won J, Yun JW (2007) Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol 75:1257–1265PubMedCrossRefGoogle Scholar
  60. Choi HK, Willett WC, Stampfer MJ, Rimm E, Hu FB (2005) Dairy consumption and risk of type 2 diabetes mellitus in men: a prospective study. Arch of Int Med 165:997–1003CrossRefGoogle Scholar
  61. Choi D, Kim YS, Nam HG, Shin HJ, Soon-Na M, Choi OY, Lee HD, Cha WS (2011) Functional properties of hot water extract of a fish, seaweed, and mushroom mixture. Korean J Chem Eng 28:1266–1271. doi:10.1007/s11814-011-0049-x CrossRefGoogle Scholar
  62. Chorváthová V, Bobek P, Ginter E, Klvanová J (1993) Effect of the oyster fungus on glycaemia and cholesterolaemia in rats with insulin-dependent diabetes. Physiol Res 42:175–179Google Scholar
  63. Chung MJ, Chung CK, Jeong Y, Ham SS (2010) Anti-cancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutr Res Pract 4:177–182PubMedCrossRefGoogle Scholar
  64. Cobelli C, Renard E, Kovatchev B (2011) Artificial pancreas past, present, future. Diabetes 60:2672–2682PubMedCrossRefGoogle Scholar
  65. Colagiuri S (2012) Optimal management of type 2 diabetes: the evidence. Diabetes Obes Metab 14:3–8PubMedCrossRefGoogle Scholar
  66. Colak A, Faiz O, Sesli E (2009) Nutritional composition of some wild edible mushrooms. Turkish J Biochem 34:25–31Google Scholar
  67. Costa B, Cabré JJ, Sagarra R, Solà-Morales O, Barrio F, Piñol JL, Cos X, Bolíbar B, Castell C, Kissimova-Skarbek K, Tuomilehto J (2011) Rationale and design of the PREDICE project: cost-effectiveness of type 2 diabetes prevention among high-risk Spanish individuals following lifestyle intervention in real-life primary care setting. BMC Publ Health 11:623–630CrossRefGoogle Scholar
  68. Crichton GE, Elias MF, Dore GA, Robbins MA (2012) Relation between dairy food intake and cognitive function: the Maine-Syracuse Longitudinal Study. Int Dairy J 22:15–23CrossRefGoogle Scholar
  69. Cui B, Han L, Qu J, Lv Y (2009) Hypoglycemic activity of Grifola frondosa rich in vanadium. Biol Trace Elem Res 131:186–191PubMedCrossRefGoogle Scholar
  70. Curll M, DiNardo M, Noschese M, Korytkowski MT (2010) Menu selection, glycaemic control and satisfaction with standard and patient-controlled consistent carbohydrate meal plans in hospitalised patients with diabetes. Qual Saf Health Care 19:355–359PubMedCrossRefGoogle Scholar
  71. Da Silva MCS, Naozuka J, da Luz JMR, de Assunção LS, Oliveira PV, Vanetti MCD, Bazzolli DMS, Kasuya MCM (2012) Enrichment of Pleurotus ostreatus mushrooms with selenium in coffee husks. Food Chem 131:558–563CrossRefGoogle Scholar
  72. Dai YC (2010) Hymenochaetaceae (Basidiomycota) in China. Fungal Divers 45:131–343CrossRefGoogle Scholar
  73. Dai YC, Zhou LW, Cui BK, Chen YQ, Decock C (2010) Current advances in Phellinus sensu lato: medicinal species, functions, metabolites and mechanisms. Appl Microbiol Biotechnol 87(5):1587–1593PubMedCrossRefGoogle Scholar
  74. Das SK, Masuda M, Sakurai A, Sakakibara M (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81:961–968PubMedCrossRefGoogle Scholar
  75. Davis TM, Knuiman M, Kendall P, Vu H, Davis WA (2000) Reduced pulmonary function and its associations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract 50:153–159PubMedCrossRefGoogle Scholar
  76. De Mello VD, Schwab U, Kolehmainen M, Koenig W, Siloaho M, Poutanen K, Mykkänen H, Uusitupa M (2011) A diet high in fatty fish, bilberries and wholegrain products improves markers of endothelial function and inflammation in individuals with impaired glucose metabolism in a randomised controlled trial: the Sysdimet study. Diabetologia 54:2755–2767PubMedCrossRefGoogle Scholar
  77. De Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD (2012) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action - A Review. Fungal Divers 55:1–35CrossRefGoogle Scholar
  78. Deepalakshmi K, Mirunalini S (2011) Therapeutic properties and current medical usage of mushroom: Ganoderma lucidum. Int J Pharmaceutical Sci Res 2:1922–1929Google Scholar
  79. Ding ZY, Lu YJ, Lu ZX, lv FX, Wang YH, Bei XM, Wang F, Zhang KC (2010) Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem 121:39–43CrossRefGoogle Scholar
  80. Ding Z, Wang W, Wang F, Wang Q, Zhang K (2012) Polysaccharides production by submerged fermentation of Coprinus comatus and their inhibitory effects on non-enzymatic glycosylation. J Med Plants Res 6:1375–1381Google Scholar
  81. Dodd H, Williams S, Brown R, Venn B (2011) Calculating meal glycemic index by using measured and published food values compared with directly measured meal glycemic index. Am J Clin Nutr 94(4):992–996PubMedCrossRefGoogle Scholar
  82. Dong JY, Zhang YH, Tong K, Quin LQ (2012) Depression and risk of stroke: a meta-analysis of prospective studies. Stroke 43:32–37PubMedCrossRefGoogle Scholar
  83. Dotan N, Wasser SP, Mahajna J (2011) The culinary-medicinal mushroom Coprinus comatus as a natural antiandrogenic modulator. Integr Cancer Ther 10:148–159PubMedCrossRefGoogle Scholar
  84. El-Rahim AHA, Radwan HA, El-Moneim OMA, Farag IM, Nada SA (2010) The influence of amaryl on genetic alterations and sperm abnormalities of rats with alloxan-induced hyperglycemia. J American Sci 6:1739–1748Google Scholar
  85. Eurich DT, McAlister FA, Blackburn DF, Majumdar SR, Tsuyuki RT, Varney J, Johnson JA (2007) Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. British Medical Journal (BMJ) 335:497CrossRefGoogle Scholar
  86. Farret A, Catargi B, Riveline JP, Melki V, Schaepelynck P, Sola A, Guerci B, Bertet H, Mura T, Chevassus H, Renard E (2012) Controlled randomized sudy in cross-over comparing the effects on glycemic control of immediate and combined bolus in type 1 diabetic patients treated by portable insulin pump. Diabetes and Metabolism 38(Special Issue: 2):A6–A6CrossRefGoogle Scholar
  87. Fatmawati S, Shimizu K, Kondo R (2011) Ganoderol B: a potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine 18:1053–1055PubMedCrossRefGoogle Scholar
  88. Feillet-Coudray C, Rock E, Coudray C, Grzelkowska K, Azais-Braesco V, Dardevet D, Mazur A (1999) Lipid peroxidation and antioxidant status in experimental diabetes. Clin Chim Acta 284:31–43PubMedCrossRefGoogle Scholar
  89. Fernández-Real JM, Pickup JC (2012) Innate immunity, insulin resistance and type 2 diabetes. Diabetologia 55:273–278PubMedCrossRefGoogle Scholar
  90. Fernández-Real JM, Ricart W (1999) Insulin resistance and inflammation in an evolutionary perspective. The contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 42:1367–1374PubMedCrossRefGoogle Scholar
  91. Ferreira ICFR, Vaz JA, Vasconcelos MH, Martins A (2010) Compounds from wild mushrooms with antitumor potential. Anticancer Agents Med Chem 10:424–436PubMedGoogle Scholar
  92. Firenzuoli F, Gori L, Lombardo G (2008) The medicinal mushroom Agaricus blazei murrill: review of literature and pharmaco-toxicological problems. Evid Based Complement Alternat Med 5:3–15PubMedCrossRefGoogle Scholar
  93. Fortes RC, Carvalho Garbi Novaes MR (2011) The effects of Agaricus sylvaticus fungi dietary supplementation on the metabolism and blood pressure of patients with colorectal cancer during post surgical phase. Nutr Hosp 26:176–186Google Scholar
  94. Fortes RC, Recôva VL, Melo AL, Novaes MRCG (2008) Effects of dietary supplementation with medicinal fungus in fasting glycemia levels of patients with colorectal cancer: a randomized, double-blind, placebo-controlled clinical study. Nutr Hosp 23:591–598PubMedGoogle Scholar
  95. Fortes RC, Novaes MR, Recôva VL, Melo AL (2009) Immunological, hematological, and glycemia effects of dietary supplementation with Agaricus sylvaticus on patients' colorectal cancer. Exp Biol Med (Maywood) 234:53–62CrossRefGoogle Scholar
  96. Francia C, Fons F, Poucheret P, Rapior S (2007) Activités biologiques des champignons: utilisations en médecine traditionnelle. Annales de la Société d’Horticulture et d’Histoire Naturelle de l’Hérault 147:77–88Google Scholar
  97. Fukushima M, Nakano M, Morii Y, Ohashi T, Fujiwara Y, Sonoyama K (2000) Hepatic LDL receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J Nutr 130:2151–2156PubMedGoogle Scholar
  98. Gallagher AM, Flatt PR, Duffy G, Abdel-Wahab YHA (2003) The effects of traditional antidiabetic plants on in vitro glucose diffusion. Nutr Res 23:413–424CrossRefGoogle Scholar
  99. Gao Y, Lan J, Dai X, Ye J, Zhou S (2004) A phase I/II study of ling zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetideae) extract in patients with type II diabetes mellitus. Int J Med Mushr 6:33–39CrossRefGoogle Scholar
  100. Ge ZW, Yang ZL, Vellinga EC (2010) The genus Macrolepiota (Agaricaceae, Basidiomycota) in China. Fungal Divers 45:81–98CrossRefGoogle Scholar
  101. Geosel A, Sipos L, Stefanovits-Banyai E, Kokai Z, Gyorfi J (2011) Antioxidant, polyphenol, and sensory analysis of Agaricus bisporus and Agaricus subrufescens Cultivars. Acta Alimentaria 40:33–40CrossRefGoogle Scholar
  102. Ghaly IS, Ahmed ES, Booles HF, Farag IM, Nada SA (2011) Evaluation of antihyperglycemic action of oyster mushroom (Pleurotus ostreatus) and its effect on DNA damage, chromosome aberrations and sperm abnormalities in streptozotocin-induced diabetic rats. Global Veterinaria 7:532–544Google Scholar
  103. Ghosh S, Ahire M, Patil S, Jabgunde A, Dusane MB, Joshi BN, Pardesi K, Jachak S, Dhavale DD, Chopade BA (2012) Antidiabetic activity of Gnidia glauca and Dioscorea bulbifera: potent amylase and glucosidase inhibitors. Evid Based Complement Alternat Med ID 929051:10 p doi:10.1155/2012/929051
  104. Goldberg RB (2006) Lifestyle interventions to prevent type 2 diabetes. Lancet 368:1634–1636PubMedCrossRefGoogle Scholar
  105. Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR (1995) In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 153:217–231PubMedCrossRefGoogle Scholar
  106. Gossain VV, Aldasouqi S (2010) The challenge of undiagnosed pre-diabetes, diabetes and associated cardiovascular disease Review article. Int J Diabetes Mellitus 2:43–46CrossRefGoogle Scholar
  107. Goyal RK, Mehta AA, Mahajan SG (2008) Classification of herbal antidiabetic based on mechanism of action and chemical constituents. Recent Progress Med Plants 20:65–110Google Scholar
  108. Gray AM, Flatt PR (1998) Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J Endocrinol 157:259–266PubMedCrossRefGoogle Scholar
  109. Greevy RA Jr, Huizinga MM, Roumie CL, Grijalva CG, Murff H, Liu X, Griffin MR (2011) Comparisons of persistence and durability among three oral antidiabetic therapies using electronic prescription-fill data: the impact of adherence requirements and stockpiling. Clin Pharmacol Ther 90:813–819PubMedCrossRefGoogle Scholar
  110. Grienke U, Mihály-Bison J, Schuster D, Afonyushkin T, Binder M, Guan SH, Cheng CR, Wolber G, Stuppner H, Guo DA, Bochkov VN, Rollinger JM (2011) Pharmacophore-based discovery of FXR-agonists. Part II: identification of bioactive triterpenes from Ganoderma lucidum. Bioorg Med Chem 19:6779–6791PubMedCrossRefGoogle Scholar
  111. Guillamón E, García-Lafuente A, Lozano M, D’Arrigo M, Rostagno MA, Villares A, Martínez JA (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81:715–723PubMedCrossRefGoogle Scholar
  112. Guillamón E, Garcia-Lafuente A, Lozano M, Moro C, Palacios I, D’Arrigo M, Martinez JA, Villares A (2011) Mushroom proteins potential therapeutic agents. Agro Food Industry Hi-tech 22:42–44Google Scholar
  113. Gunde-Cimerman N, Plemenitas A, Cimerman A (1993) Pleurotus fungi produce mevinolin, an inhibitor of HMG CoA reductase. FEMS Microbiol Lett 113:333–337Google Scholar
  114. Gunde-Cimerman N, Plemenitas A (2001) Hypocholesterolemic activity of the genus Pleurotus (Jacq.: Fr.) P. Kumm. (Agaricales s. l., Basidiomycetes). Int J Med Mushr 3:395–397Google Scholar
  115. Guo QC, Zhang C (1995) Clinical observations of adjunctive treatment of 20 diabetic patients with JinShuiBao capsule. J Admin Tradit Chin Med 5:22Google Scholar
  116. Guo FC, Savelkoul HFJ, Kwakkel RP, Williams BA, Verstegen MWA (2003) Immunoactive, medicinal properties of mushroom and herb polysaccharides and their potential use in chicken diets. World’s Poultry Sci J 59:427–440CrossRefGoogle Scholar
  117. Guo JY, Han CC, Liu YM (2010) A contemporary treatment approach to both diabetes and depression by Cordyceps sinensis, rich in vanadium. Evid Based Complement Alternat Med 7:387–389PubMedCrossRefGoogle Scholar
  118. Guo J, Li C, Wang J, Liu Y, Zhang J (2011) Vanadium-enriched Cordyceps sinensis, a contemporary treatment approach to both diabetes and depression in rats. Evid Based Complement Alternat Med 450316: 6 p doi:10.1093/ecam/neq058
  119. Gupta V, Vinay DG, Rafiq S, Kranthikumar MV, Janipalli CS, Giambartolomei C, Evans DM, Mani KR, Sandeep MN, Taylor AE, Kinra S, Sullivan RM, Bowen L, Timpson NJ, Smith GD, Dudbridge F, Prabhakaran D, Ben-Shlomo Y, Reddy KS, Ebrahim S, Chandak GR, Indian Migration Study Group (2012) Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs. Diabetologia 55:349–357PubMedCrossRefGoogle Scholar
  120. Hagopian WA, Erlich H, Lernmark A, Rewers M, Ziegle AG et al (2011) Environmental determinants of diabetes in the young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants. Pediatr Diabetes 12:733–743PubMedCrossRefGoogle Scholar
  121. Halpern GM (2010) Medicinal mushrooms. Prog Nutr 12:29–36Google Scholar
  122. Han C, Liu T (2009) A comparison of hypoglycemic activity of three species of basidiomycetes rich in vanadium. Biol Trace Elem Res 127:177–182PubMedCrossRefGoogle Scholar
  123. Han SB, Lee CW, Jeon YJ, Hong ND, Yoo ID, Yang KH et al (1999) The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacol 41:157–164CrossRefGoogle Scholar
  124. Han SB, Lee CW, Kang JS, Yoon YD, Lee KH, Lee K, Park SK, Kim HM (2006a) Acidic polysaccharide from Phellinus linteus inhibits melanoma cell metastasis by blocking cell adhesion and invasion. Int Immunopharmacol 6:697–702PubMedCrossRefGoogle Scholar
  125. Han C, Yuan J, Wang Y, Li L (2006b) Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol 20:191–196PubMedCrossRefGoogle Scholar
  126. Hansen MB, Jensen ML, Carstensen B (2012) Causes of death among diabetic patients in Denmark. Diabetologia 55:294–302PubMedCrossRefGoogle Scholar
  127. Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW (2007) Direct effect of cholesterol on insulin secretion; a novel mechanism for pancreatic β-cell dysfunction. Diabetes 56:2328–2338PubMedCrossRefGoogle Scholar
  128. Hawksworth DL (2001) Mushrooms: the extent of the unexplored potential. Int J Med Mushr 3:333–337Google Scholar
  129. Higaki M, Eguchi F, Zhang J, Kikukawa T, Abe C, Kato K, Hasegawa K, Watanabe Y (2005) Improvement of pancreatic beta-cells by hot water extract from cultured Agaricus blazei (CJ-01) fruiting bodies in GK rats. J Tradit Med 17:205–214Google Scholar
  130. Hobbs C (1995) Medicinal mushrooms: an exploration of tradition, healing, and culture. Botanica Press, Santa Cruz, USA, 251pGoogle Scholar
  131. Hobbs C (2000) Medicinal value of Lentinus edodes (Berk.) Sing. (Agaricomycetideae). A literature review. Int J Med Mushr 2:287–302CrossRefGoogle Scholar
  132. Hobbs CR (2004) Medicinal value of Turkey Tail fungus Trametes versicolor (L.:Fr.) Pilát (Aphyllophoromycetideae). Int J Med Mushr 6:195–218CrossRefGoogle Scholar
  133. Hobbs CR (2005) The chemistry, nutritional value, immunopharmacology, and safety of the traditional food of medicinal split-gill fungus Schizophyllum commune Fr.:Fr. (Aphyllophoromycetideae). A literature review. Int J Med Mushr 7:127–140CrossRefGoogle Scholar
  134. Holliday J, Cleaver M, Wasser SP (2005) Cordyceps. Encyclopedia of dietary supplements: Dekker Encyclopedias, Taylor and Francis Publishing 1–13Google Scholar
  135. Hong L, Xun M, Wutong W (2007) Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol 59:575–582PubMedCrossRefGoogle Scholar
  136. Horio H, Ohtsuru M (2001) Maitake (Grifola frondosa) improve glucose tolerance of experimental diabetic rats. J Nutr Sci Vitaminol 47:57–63PubMedCrossRefGoogle Scholar
  137. Horton ES (1995) NIDDM - The devastating disease. Diabetes Res Clin Pr 28:S3–S11CrossRefGoogle Scholar
  138. Hossain S, Hashimoto M, Choudhury EK, Alam N, Hussain S, Hasan M, Choudhury SK, Mahmud I (2003) Dietary mushroom (Pleurotus ostreatus) ameliorates atherogenic lipid in hypercholesterolaemic rats. Clin Exp Pharmacol Physiol 30:470–475PubMedCrossRefGoogle Scholar
  139. Howlett HC, Bailey CJ (1999) A risk-benefit assessment of metformin in type 2 diabetes mellitus. Drug Saf 20:489–503PubMedCrossRefGoogle Scholar
  140. Hsu CH, Liao YL, Lin SC, Hwang KC, Chou P (2007) The mushroom Agaricus blazei murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double-blinded, and placebo-controlled clinical trial. J Altern Complement Med 13:97–102PubMedCrossRefGoogle Scholar
  141. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345:790–797PubMedCrossRefGoogle Scholar
  142. Hu SH, Wang JC, Lien JL, Liaw ET, Lee MY (2006a) Antihyperglycemic effect of polysaccharide from fermented broth of Pleurotus citrinopileatus. Appl Microbiol Biotechnol 70:107–113PubMedCrossRefGoogle Scholar
  143. Hu SH, Liang ZC, Chia YC, Lien JL, Chen KS, Lee MY, Wang JC (2006b) Antihyperlipidemic and antioxidant effects of extracts from Pleurotus citrinopileatus. J Agric Food Chem 54:2103–2110PubMedCrossRefGoogle Scholar
  144. Hu T, Liu P, Ni Y, Lu C (2012) Isolation, purification and effects of hypoglycemic functional polysaccharides from Inonotus obliquus. African J Biotechnol 11:7738–7743Google Scholar
  145. Huang GJ, Hsieh WT, Chang HY, Huang SS, Lin YC, Kuo YH (2011) α-Glucosidase and aldose reductase inhibitory activities from the fruiting body of Phellinus merrillii. J Agric Food Chem 59:5702–5706PubMedGoogle Scholar
  146. Hung WT, Wang SH, Chen CH, Yang WB (2008) Structure determination of β-glucans from Ganoderma lucidum with matrix assisted laser desorption/ionization (MALDI) Mass Spectrometry. Molecules 13:1538–1550PubMedCrossRefGoogle Scholar
  147. Huseini HF, Kianbakht S, Hajiaghaee R, Dabaghian FH (2012) Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Planta Med 78:311–316PubMedCrossRefGoogle Scholar
  148. Hwang HS, Yun JW (2010) Hypoglycemic effect of polysaccharides produced by submerged mycelial culture of Laetiporus sulphureus on streptozotocin-induced diabetic rats. Biotechnol Bioprocess Eng 15:173–181CrossRefGoogle Scholar
  149. Hwang HJ, Kim SW, Lim JM, Joo JH, Kim HO, Kim HM, Yun JW (2005) Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats. Life Sci 76:3069–3080PubMedCrossRefGoogle Scholar
  150. Hyde KD (2001) Where are the missing fungi; does Hong Kong have any answers. Mycol Res 105:1514–1518CrossRefGoogle Scholar
  151. Hyde KD, Bahkali AH, Moslem MA (2010) Fungi - an unusual source for cosmetics. Fungal Divers 43:1–9CrossRefGoogle Scholar
  152. Ianculov I, Botau D, Bordean DM, Cucu M, Bolda V, Pruna P (2010) Determination of total proteins in gemotherapeutic preparations with the Folin-Ciocalteu reagent. Romanian Biotechnol Lett 15:5410–5416Google Scholar
  153. Ichimura T, Otake T, Mori H, Maruyama S (1999) HIV-1 protease inhibition and anti-HIV effect of natural and synthetic water-soluble lignin-like substance. Biosci Biotech and Bioch 63:2202–2204CrossRefGoogle Scholar
  154. Igel LI, Powell AG, Apovian CM, Aronne LJ (2012) Advances in medical therapy for weight loss and the weight-centric management of type 2 diabetes mellitus. Curr Atheroscler Rep 14:60–69PubMedCrossRefGoogle Scholar
  155. Ishii PL, Prado CK, Mauro MO, Carreira CM, Mantovani MS, Ribeiro LR, Dichi JB, Oliveira RJ (2011) Evaluation of Agaricus blazei in vivo for antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities. Regul Toxicol Pharmacol 59:412–422PubMedCrossRefGoogle Scholar
  156. Jakopovich I (2011) New dietary supplements from medicinal mushrooms: Dr Myko San—a registration report. Int J Med Mushr 13:307–313CrossRefGoogle Scholar
  157. Jang JS, Lee JS, Lee JH, Kwon DS, Lee KE, Lee SY, Hong EK (2010) Hispidin produced from Phellinus linteus protects pancreatic β-cells from damage by hydrogen peroxide. Arch Pharm Res 33:853–861PubMedCrossRefGoogle Scholar
  158. Jayakumar T, Ramesh E, Geraldine P (2006) Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem Toxicol 44:1989–1996PubMedCrossRefGoogle Scholar
  159. Jenkins NT, Hagberg JM (2011) Aerobic training effects on glucose tolerance in prediabetic and normoglycemic humans. Med Sci Sports Exerc 43:2231–2240PubMedCrossRefGoogle Scholar
  160. Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30:49–56PubMedCrossRefGoogle Scholar
  161. Jia W, Gaoz W, Tang L (2003) Antidiabetic herbal drugs officially approved in China. Phytother Res 17:1127–1134PubMedCrossRefGoogle Scholar
  162. Jia J, Zhang X, Hu YS, Wu Y, Wang QZ, Li NN, Guo QC, Dong XC (2009) Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats. Food Chem 115:32–36CrossRefGoogle Scholar
  163. Jiangwei M, Zengyong Q, Xia X (2011) Optimisation of extraction procedure for black fungus polysaccharides and effect of the polysaccharides on blood lipid and myocardium antioxidant enzymes activities. Carbohyd Polym 84:1061–1068CrossRefGoogle Scholar
  164. Johnston N (2005) Medicinal mushroom cuts off prostate cancer cells’ blood supply. Drug Discov Today 10:1584PubMedCrossRefGoogle Scholar
  165. Joo JI, Kim DH, Yun JW (2010) Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation. Phytother Res 24:1592–1599PubMedCrossRefGoogle Scholar
  166. Kahlos K (1994) Antifungal activity of cysteine, its effect on C-21 oxygenated lanosterol derivatives and other lipid in Inonotus obliquus, in vitro. Appl Microbiol Biot 3:339–385Google Scholar
  167. Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J (1998) Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci (Lond) 94:623–632Google Scholar
  168. Kan WC, Wang HY, Chien CC, Li SL, Chen YC, Chang LH, Cheng CH, Tsai WC, Hwang JC et al (2012) Effects of extract from solid-state fermented Cordyceps sinensis on type 2 diabetes mellitus. Evid Based Complement Alternat Med 743107:10 p. doi:10.1155/2012/743107
  169. Kanazawa K (2011) Bioavailability of non-nutrients for preventing lifestyle related diseases. Trends Food Sci Tech 22:655–659CrossRefGoogle Scholar
  170. Kaparianos A, Argyropoulou E, Sampsonas F, Karkoulias K, Tsiamita M, Spiropoulos K (2008) Pulmonary complications in diabetes mellitus. Chronic Respiratory Disease 5:101–108PubMedCrossRefGoogle Scholar
  171. Karou DS, Tchacondo T, Djikpo Tchibozo MA, Abdoul-Rahaman S, Anani K, Koudouvo K, Batawila K, Agbonon A, Simpore J, de Souza C (2011) Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the Central Region of Togo. Pharm Biol 49:1286–1297PubMedCrossRefGoogle Scholar
  172. Kaur J, Singh P, Sowers JR (2002) Diabetes and cardiovascular diseases. Am J Ther 9:510–515PubMedCrossRefGoogle Scholar
  173. Kawagishi H, Shimada A, Hosokawa S, Mori H, Sakamoto H, Ishiguro Y et al (1996) Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 37:7399–7402CrossRefGoogle Scholar
  174. Kawasaki E, Abiru N, Eguchi K (2004) Prevention of type 1 diabetes: from the view point of β-cell damage. Diabetes Res Clin Pract 66:S27–S32PubMedCrossRefGoogle Scholar
  175. Kerr D, Partridge H, Knott J, Thomas PW (2011) HbA1c 3 months after diagnosis predicts premature mortality in patients with new onset type 2 diabetes. Diabet Med 28:1520–1524PubMedCrossRefGoogle Scholar
  176. Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia 97:12–24PubMedCrossRefGoogle Scholar
  177. Khan MA, TaniaM ZDZ, Chen HC (2010) Cordyceps Mushroom: a potent anticancer nutraceutical. Open Nutraceuticals J 3:179–183CrossRefGoogle Scholar
  178. Kidd PM (2000) The use of mushroom Glucans and proteoglycans in cancer treatment. Altern Med Rev 5:4–27Google Scholar
  179. Kiho T, Tsujimura Y, Sakushima M, Usui S, Ukai S (1994) Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Yakugaku zasshi 114:308–315Google Scholar
  180. Kiho T, Yamane A, Hui J, Usui S, Ukai S (1996) Polysaccharide in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effects on glucose metabolism in mouse liver. Biol Pharm Bull 19:294–296PubMedCrossRefGoogle Scholar
  181. Kiho T, Ookubo K, Usui S, Ukai S, Hirano K (1999) Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol Pharm Bull 22:966–970PubMedCrossRefGoogle Scholar
  182. Kiho T, Kochi M, Usui S, Hirano K, Aizawa K, Inakuma T (2001) Antidiabetic effect of an acidic polysaccharide (TAP) from Tremella aurantia and its degradation product (TAP-H). Biol Pharm Bull 24:1400–1403PubMedCrossRefGoogle Scholar
  183. Kim OH, Yang BK, Hur NI, Das S, Yun JW, Choi YS, Song CH (2001a) Hypoglycemic effects of mycelia produced from submerged culture of Phellinus linteus (Berk. et Curt.) Teng (Aphyllophoromycetideae) in streptozotocin-induced diabetic rats. Int J Med Mushr 3:21–26Google Scholar
  184. Kim DH, Yang BK, Jeong SC, Park JB, Cho SP, Das S, Yun JW, Song CH (2001b) Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol Lett 23:513–517CrossRefGoogle Scholar
  185. Kim DH, Yang BK, Jeong SC, Hur NJ, Das S, Yun JW, Choi JW, Lee YS, Song CH (2001c) A preliminary study on the hypoglycemic effect of the exo-polymers produced by five different medicinal mushrooms. J Microbiol Biotechnol 11:167–171Google Scholar
  186. Kim YW, Kim KH, Choi HJ, Lee DS (2005) Anti-diabetic activity of beta-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol Lett 27:483–487PubMedCrossRefGoogle Scholar
  187. Kim YO, Park HW, Kim JH, Lee JY, Moon SH, Shin CS (2006) Anticancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci 79:72–80PubMedCrossRefGoogle Scholar
  188. Kim SK, Hong UP, Kim JS, Kim CH, Lee KW, Choi SE, Park KH, Lee MW (2007) Antidiabetic effect of Auricularia auricula mycelia in streptozotocin-induced diabetic rats. Natural Product Sci 13:390–393Google Scholar
  189. Kim JI, Kang MJ, Im J, Seo YJ, Lee YM, Song JH, Lee JH, Kim ME (2010a) Effect of King Oyster Mushroom (Pleurotus eryngii) on Insulin Resistance and Dyslipidemia in db/db Mice. Food Sci biotechnol 19:239–242CrossRefGoogle Scholar
  190. Kim HM, Kang JS, Kim JY, Park SK, Kim HS, Lee YJ, Yun J, Hong JT, Kim Y, Han SB (2010b) Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in non-obese diabetic mouse. Int Immunopharmacol 10:72–78PubMedCrossRefGoogle Scholar
  191. Kim SP, Kang MY, Kim JH, Nam SH, Friedman M (2011) Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. J Agric Food Chem 59:9861–9869PubMedCrossRefGoogle Scholar
  192. King H (1998) Epidemiology of glucose intolerance and gestational diabetes in women of childbearing age. Diabetes Care 21:B9–B13PubMedCrossRefGoogle Scholar
  193. Kirkham S, Akilen R, Sharma S, Tsiami A (2009) The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. Diabetes Obes Metab 11:1100–1113PubMedCrossRefGoogle Scholar
  194. Kitagawa T, Owada M, Urakami T, Tajima N (1994) Epidemiology of type 1 (insulin-dependent) and type 2 (non insulin-dependent) diabetes mellitus in Japanese children. Diabetes Res Clin Pract 24:S7–S13PubMedCrossRefGoogle Scholar
  195. Kobayashi T (1994) Subtype of insulin-dependent diabetes mellitus (IDDM) in Japan: Slowly progressive IDDM—the clinical characteristics and pathogenesis of the syndrome. Diabetes Res Clin Pract 24:S95–S99PubMedCrossRefGoogle Scholar
  196. Komura DL, Ruthes AC, Carbonero ER, Alquini G, Rosa MCC, Sassaki GL, Iacomini M (2010) The origin of mannans found in submerged culture of basidiomycetes. Carbohyd Polym 79:1052–1056CrossRefGoogle Scholar
  197. Konno S (2001) Maitake D-fraction: apoptosis inducer and immune enhancer. Altern Complementary Ther 17:102–107CrossRefGoogle Scholar
  198. Koyyalamudi SR, Jeong SC, Cho KY, Pang G (2009a) Vitamin B12 is the active corrinoid produced in cultivated white button mushrooms (Agaricus bisporus). J Agric Food Chem 57:6327–6333PubMedCrossRefGoogle Scholar
  199. Koyyalamudi SR, Jeong SC, Song CH, Cho KY, Pang G (2009b) Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. J Agric Food Chem 57:3351–3355PubMedCrossRefGoogle Scholar
  200. Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65:385–411PubMedCrossRefGoogle Scholar
  201. Kuller LH (2006) Nutrition, lipids and cardiovascular disease. Nutr Rev 64:S15–S26PubMedCrossRefGoogle Scholar
  202. Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M et al (2002) Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract 55:65–85PubMedCrossRefGoogle Scholar
  203. Kwon AH, Qiu Z, Hashimoto M, Yamamoto K, Kimura T (2008) Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg 197(4):503–509PubMedCrossRefGoogle Scholar
  204. Kwon JS, Lee JS, Shin WC, Lee KE, Hong EK (2009) Optimization of culture conditions and medium components for the production of mycelial biomass and exo-polysaccharides with Cordyceps militaris in liquid culture. Biotechnol Bioprocess Eng 14:756–762CrossRefGoogle Scholar
  205. Laaksonen DE, Niskanen L, Lakka HM, Lakka TA, Uusitupa M (2004) Epidemiology and treatment of the metabolic syndrome. Ann Med 36:332–346PubMedCrossRefGoogle Scholar
  206. Lange LJ, Piette JD (2005) Perceived health status and perceived diabetes control: psychological indicators and accuracy. J Psychosom Res 58(2):129–137PubMedCrossRefGoogle Scholar
  207. Lee JS, Hong EK (2011) Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int Immunopharmacol 11:1226–1233PubMedCrossRefGoogle Scholar
  208. Lee IK, Yun BS (2011) Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus spp., and their medicinal importance. J Antibiot 64:349–359PubMedCrossRefGoogle Scholar
  209. Lee BH, Kim HJ, Chang JS (1999) Inhibitory effect of Coprinus comatus ethanol extract on the liver damage in benzopyrene-treated mice. J Korean Society Food Sci Nutr 28:1364–1368Google Scholar
  210. Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW (2004) Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme Microb Technol 35:369–376CrossRefGoogle Scholar
  211. Lee YS, Kang YH, Jung JY, Lee S, Ohuchi K, Shin KH, Kang IJ, Park JH, Shin HK, Lim SS (2008a) Protein glycation inhibitors from the fruiting body of Phellinus linteus. Biol Pharm Bull 31:1968–1972PubMedCrossRefGoogle Scholar
  212. Lee IK, Lee JH, Yun BS (2008b) Polychlorinated compounds with PPAR-gamma agonistic effect from the medicinal fungus Phellinus ribis. Bioorg Med Chem Lett 18(16):4566–4568PubMedCrossRefGoogle Scholar
  213. Lee YS, Kang IJ, Won MH, Lee JY, Kim JK, Lim SS (2010) Inhibition of protein tyrosine phosphatase 1beta by hispidin derivatives isolated from the fruiting body of Phellinus linteus. Nat Prod Commun 5(12):1927–1930PubMedGoogle Scholar
  214. Lee KH, Morris-Natschke SL, Yang X, Huang R, Zhou T, Wu SF, Shi Q, Itokawa H (2012) Recent progress of research on medicinal mushrooms, foods, and other herbal products used in traditional Chinese medicine. J Traditional Complement Med 2(2):84–95Google Scholar
  215. Leung PH, Zhao S, Ho KP, Wu JY (2009) Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 114:1251–1256CrossRefGoogle Scholar
  216. Li DH (2012) Diabetes and pancreatic cancer. Mol Carcinog 51(1):64–74PubMedCrossRefGoogle Scholar
  217. Li SP, Zhao KJ, Ji ZN, Song ZH, Dong TT, Lo CK, Cheung JK, Zhu SQ, Tsim KW (2003) A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci 73(19):2503–2513PubMedCrossRefGoogle Scholar
  218. Li WL, Zheng HC, Bukuru J, Kimpe N (2004) Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 92:1–21PubMedCrossRefGoogle Scholar
  219. Li SP, Zhang GH, Zeng Q, Huang ZG, Wang YT, Dong TT, Tsim KW (2006) Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 13(6):428–433PubMedCrossRefGoogle Scholar
  220. Li B, Lu F, Suo XM (2010) Glucose lowering activity of Coprinus comatus. Agro Food Industry Hi-Tech 21:15–17Google Scholar
  221. Li TH, Hou CC, Chang CLT, Yang WC (2011a) Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos. Evid Based Complement Alternat Med 128402:8p doi:10.1155/2011/128402
  222. Li N, Li L, Fang JC, Wong JH, Ng TB, Jiang Y, Wang CR, Zhang NY, Wen TY, Qu LY, Lv PY, Zhao R, Shi B, Wang YP, Wang XY, Liu F (2011b) Isolation and identification of a novel polysaccharide-peptide complex with antioxidant, antiproliferative and hypoglycaemic activities from the abalone mushroom. Biosci Rep 32(3):221–228CrossRefGoogle Scholar
  223. Li N, Li L, Fang JC, Wong JH, Ng TB, Jiang Y, Wang CR, Zhang NY, Wen TY, Qu Li Y et al (2012) Isolation and identification of a novel polysaccharide-peptide complex with antioxidant, anti-proliferative and hypoglycaemic activities from the abalone mushroom. Biosci Rep 32(3):221–228PubMedCrossRefGoogle Scholar
  224. Liday C (2011) Overview of the guidelines and evidence for the pharmacologic management of type 2 diabetes mellitus. Pharmacotherapy 31(12):37S–43SPubMedCrossRefGoogle Scholar
  225. Lima CU, Cordova CO, Nóbrega Ode T, Funghetto SS, Karnikowski MG (2011) Does the Agaricus blazei Murill mushroom have properties that affect the immune system? An integrative review. J Med Food 14(1–2):2–8PubMedCrossRefGoogle Scholar
  226. Lin JT, Liu WH (2006) ο-Orsellinaldehyde from the submerged culture of the edible mushroom Grifola frondosa exhibits selective cytotoxic effect against Hep 3B cells through apoptosis. J Agric Food Chem 54:7564–7569PubMedCrossRefGoogle Scholar
  227. Lindequist U, Niedermeyer THJ, Jülich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2:285–299PubMedCrossRefGoogle Scholar
  228. Liu S, Choi HK, Ford E, Song Y, Klevak A, Buring JE, Manson JE (2006) A prospective study of dairy intake and the risk of type 2 diabetes in women. Diabetes Care 29:1579–1584PubMedCrossRefGoogle Scholar
  229. Liu YW, Gao JL, Guan J, Qian ZM, Feng K, Li SP (2009) Evaluation of antiproliferative activities and action mechanisms of extracts from two species of Ganoderma on tumor cell lines. J Agric Food Chem 57:3087–3093PubMedCrossRefGoogle Scholar
  230. Liu YT, Sun J, Luo ZY, Rao SQ, Su YJ, Xu RR, Yang YJ (2012) Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food ChemToxicol 50(5):1238–1244CrossRefGoogle Scholar
  231. Lo HC, Wasser SP (2011) Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems (review). Int J Med Mushr 13:401–426CrossRefGoogle Scholar
  232. Lo HC, Tu ST, Lin KC, Lin SC (2004) The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sci 74(23):2897–2908PubMedCrossRefGoogle Scholar
  233. Lo HC, Tsai FA, Wasser SP, Yang JG, Huang BM (2006a) Effects of ingested fruiting bodies, submerged culture biomass, and acidic polysaccharide glucuronoxylomannan of Tremella mesenterica Retz.:Fr. on glycemic responses in normal and diabetic rats. Life Sci 78(17):1957–1966PubMedCrossRefGoogle Scholar
  234. Lo HC, Hsu TH, Tu ST, Lin KC (2006b) Anti-hyperglycemic activity of natural and fermented Cordyceps sinensis in rats with diabetes induced by nicotinamide and streptozotocin. Am J Chin Med 34(5):819–832PubMedCrossRefGoogle Scholar
  235. Lo HC, Hsu TH, Chen CY (2008) Submerged culture mycelium and broth of Grifola frondosa improve glycemic responses in diabetic rats. Am J Chin Med 36(2):265–285PubMedCrossRefGoogle Scholar
  236. Lu XM, Chen HX, Dong P, Fu LL, Zhang X (2010) Phytochemical characteristics and hypoglycaemic activity of fraction from mushroom Inonotus obliquus. J Sci Food Agr 90(2):276–280CrossRefGoogle Scholar
  237. Luo X, Xu X, Yu M, Yang Z, Zheng L (2008) Characterisation and immunostimulatory activity of an α-(1→6)-D-glucan from the cultured Armillaria tabescens mycelia. Food Chem 111:357–363CrossRefGoogle Scholar
  238. Lustman PJ, Amado H, Wetzel RD (1983) Depression in diabetics: a critical appraisal. Comp Psychiatry 24:65–74CrossRefGoogle Scholar
  239. Lv Y, Han L, Yuan C, Guo J (2009) Comparison of hypoglycemic activity of trace elements absorbed in fermented mushroom of Coprinus comatus. Biol Trace Elem Res 131(2):177–185PubMedCrossRefGoogle Scholar
  240. Ma ZJ, Fu Q (2009) Comparison of hypoglycemic activity and toxicity of vanadium (iv) and vanadium (v) absorbed in fermented mushroom of Coprinus comatus. Biol Trace Element Res 132(1–3):278–284CrossRefGoogle Scholar
  241. Majithia AR, Jablonski KA, McAteer JB, Mather KJ, Goldberg RB, Kahn SE, Florez JC, DPP Research Group (2011) Association of the SLC30A8 missense polymorphism R325W with proinsulin levels at baseline and after lifestyle, metformin or troglitazone intervention in the Diabetes Prevention Program. Diabetologia 54(10):2570–2574PubMedCrossRefGoogle Scholar
  242. Manohar V, Talpur NA, Echard BW, Lieberman S, Preuss HG (2002) Effects of a water-soluble extract of maitake mushroom on circulating glucose/insulin concentrations in KK mice. Diabetes Obes Metab 4:43–48PubMedCrossRefGoogle Scholar
  243. Martin KR (2010) The bioactive agent ergothioneine, a key component of dietary mushrooms, inhibits monocyte binding to endothelial cells characteristic of early cardiovascular disease. J Med Food 13(6):1340–1346PubMedCrossRefGoogle Scholar
  244. Mathé D (1995) Dyslipidemia and diabetes: animal models. Diabete Metab 21:106–111PubMedGoogle Scholar
  245. Matsuur H, Asakawa C, Kurimoto M, Mizutani J (2002) Alpha-glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa. Biosci Biotechnol Biochem 66:1576–1578PubMedCrossRefGoogle Scholar
  246. Mattila P, Könkö K, Eurola M, Pihlava JM, Astola J, Vahteristo L, Hietaniemi V, Kumpulainen J, Valtonen M, Piironen V (2001) Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 49:2343–2348PubMedCrossRefGoogle Scholar
  247. Mattila P, Salo-Väänänen P, Könkö K, Aro H, Jalava T (2002) Basic composition and amino acid contents of mushrooms cultivated in Finland. J Agric Food Chem 50:6419–6422PubMedCrossRefGoogle Scholar
  248. Meng G, Zhu H, Yang S, Wu F, Zheng H, Chen E, Xu J (2011) Attenuating effects of Ganoderma lucidum polysaccharides on myocardial collagen cross-linking relates to advanced glycation end product and antioxidant enzymes in high-fat-diet and streptozotocin-induced diabetic rats. Carbohyd Polym 84:180–185CrossRefGoogle Scholar
  249. Milner JA (2000) Functional foods: the US perspective. Am J Clin Nutr 71:1654S–1659SPubMedGoogle Scholar
  250. Mirmiran P, Noori N, Zavareh MB, Azizi F (2009) Fruit and vegetable consumption and risk factors for cardiovascular disease. Metabolism 58:460–468PubMedCrossRefGoogle Scholar
  251. Misra A, Lalan MS, Singh VK, Govil JN (2009) Role of natural polysaccharides in treatment and control of diabetes. Chemistry and medicinal value book series. Recent Progr Med Plants 25:347–373Google Scholar
  252. Mizuno T (1999a) Medicinal effects and utilization of Cordyceps (Fr.) Link (Ascomycetes) and Isaria Fr. (Mitosporic fungi) Chinese caterpillar fungi, “Tochukaso”. Int J Med Mushr 1:251–262CrossRefGoogle Scholar
  253. Mizuno T (1999b) The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int J Med Mushr 1:9–29CrossRefGoogle Scholar
  254. Mizuno T, Zhuang C, Abe K, Okamoto H, Kiho T, Ukai S, Leclerc S, Meijer L (1999) Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Pers.:Fr.) Pil. (Aphyllophoromycetideae). Int J Med Mushr 1:301–316CrossRefGoogle Scholar
  255. Monnier L, Grimaldi A, Charbonnel B, Iannascoli F, Lery T, Garofano A, Childs M (2004) Management of French patients with type 2 diabetes mellitus in medical general practice: report of the Mediab observatory. Diabetes Metab 30(1):35–42PubMedCrossRefGoogle Scholar
  256. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7:701–724PubMedCrossRefGoogle Scholar
  257. Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M (2008) Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice. Nutr Res 28(5):335–342PubMedCrossRefGoogle Scholar
  258. Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T (2009) Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res 23(3):367–372PubMedCrossRefGoogle Scholar
  259. Morrato EH, Hill JO, Wyatt HR, Ghushchyan V, Sullivan PW (2007) Physical activity in U.S. adults with diabetes and at risk for developing diabetes, 2003. Diabetes Care 30(2):203–209PubMedCrossRefGoogle Scholar
  260. Moutzouri E, Tsimihodimos V, Rizos E, Elisaf M (2011) Prediabetes: To treat or not to treat? Eur J Pharmacol 672:9–19PubMedCrossRefGoogle Scholar
  261. Mujić I, Zeković Z, Vidović S, Radojković M, Zivković J, Gođevac D (2011) Fatty acid profiles of four wild mushrooms and their potential benefits for hypertension treatment. J Med Food 14(11):1330–1337PubMedCrossRefGoogle Scholar
  262. Musselman DL, Betan E, Larsen H, Phillips LS (2003) Relationship of depression to diabetes types 1 and 2: epidemiology, biology, and treatment. Biol Psychiatry 54(3):317–329PubMedCrossRefGoogle Scholar
  263. Muszyńska B, Sułkowska-Ziaja K, Wołkowska M, Ekiert H (2011) Review Chemical, pharmacological, and biological characterization of the culinary-medicinal honey mushroom, Armillaria mellea (Vahl) P. Kumm. (Agaricomycetideae): a review. Int J Med Mushr 13:167–175CrossRefGoogle Scholar
  264. Narayan KM, Williamson DF (2010) Prevention of type 2 diabetes: risk status, clinic, and community. J Gen Intern Med 25(2):154–157PubMedCrossRefGoogle Scholar
  265. Nichols GA, Hillier TA, Brown JB (2007) Progression from newly acquired impaired fasting glucose to type 2 Diabetes. Diabetes Care 30(2):228–233PubMedCrossRefGoogle Scholar
  266. Nishizawa K, Torii K, Kawasaki A, Katada M, Ito M, Terashita K (2007) Antidepressant-like effect of Cordyceps sinensis in the mouse tail suspension test boil. Biol Pharm Bull 30:1758–1762PubMedCrossRefGoogle Scholar
  267. Niwa A, Tajiri T, Higashino H (2011) Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. J Clin Biochem Nutr 48(3):194–202PubMedCrossRefGoogle Scholar
  268. Norris SL, Lau J, Smith SJ, Schmid CH, Engelgau MM (2002) Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control. Diabetes Care 25(7):1159–1171PubMedCrossRefGoogle Scholar
  269. O’Hanlon R, Harrington TJ (2011) Diversity and distribution of mushroom forming fungi (Agaricomycetes) in Ireland. Biol Environ 111B:117–133Google Scholar
  270. O’Hanlon R, Harrington TJ (2012) Macrofungal diversity and ecology in four Irish forest types. Fungal Ecology. doi;10.1016/j.funeco.2011.12.008
  271. Oh TW, Kim YA, Jang WJ, Byeon JI, Ryu CH, Kim JO, Ha YL (2010) Semipurified fractions from the submerged-culture broth of Agaricus blazei Murill reduce blood glucose levels in streptozotocin-induced diabetic rats. J Agric Food Chem 58(7):4113–4119PubMedCrossRefGoogle Scholar
  272. Orsine JVC, Novaes MRCG, Asquieri ER (2012) Nutritional value of Agaricus sylvaticus; mushroom grown in Brazil. Nutr Hosp 27(2):449–455Google Scholar
  273. Osanai T, Tanaka M, Magota K, Tomita H, Okumura K (2012) Coupling factor 6-induced activation of ecto-F1Fo complex induces insulin resistance, mild glucose intolerance and elevated blood pressure in mice. Diabetologia 55:520–529PubMedCrossRefGoogle Scholar
  274. Otton R, Soriano FG, Verlengia R, Curi R (2004) Diabetes induces apoptosis in lymphocytes. J Endocrinol 182(1):145–156PubMedCrossRefGoogle Scholar
  275. Papas AM (1996) Determinants of antioxidant status in humans. Lipids 31:77–82CrossRefGoogle Scholar
  276. Park YK, Kim JS, Jeon EJ, Kang MH (2009) The improvement of Chaga mushroom (Inonotus obliquus) extract supplementation on the blood glucose and cellular DNA damage in streptozotocin-induced diabetic rats. Korean J Nutr 42(1):5–13Google Scholar
  277. Pastors JC (2003) Medications or lifestyle change with medical nutrition therapy. Curr Diabetes Rep 3(5):386–391CrossRefGoogle Scholar
  278. Pastors JG, Warshaw H, Daly A, Franz M, Kulkarni K (2002) The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care 25(3):608–613PubMedCrossRefGoogle Scholar
  279. Paterson RRM (2006) Ganoderma - a therapeutic fungal biofactory (Review). Phytochemistry 67:1985–2001PubMedCrossRefGoogle Scholar
  280. Percario S, Odorizzi VF, Souza DR, Pinhel MA, Gennari JL, Gennari MS, Godoy MF (2008) Edible mushroom Agaricus sylvaticus can prevent the onset of atheroma plaques in hypercholesterolemic rabbits. Cell Mol Biol (Noisy-le-grand) 54(Suppl OL):1055–1061Google Scholar
  281. Pereira E, Barros L, Martins A, Ferreira ICFR (2012) Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chem 130:394–403CrossRefGoogle Scholar
  282. Perera PK, Li Y (2011) Mushrooms as a functional food mediator in preventing and ameliorating diabetes. Funct Foods Health Dis 4:161–171Google Scholar
  283. Petersen RK, Christensen KB, Assimopoulou AN, Fretté X, Papageorgiou VP, Kristiansen K, Kouskoumvekaki I (2011) Pharmacophore-driven identification of PPARγ agonists from natural sources. J Comput Aided Mol Des 25(2):107–116PubMedCrossRefGoogle Scholar
  284. Petrova RD, Wasser SP, Mahajna J, Denchev CM, Nevo E (2005) Potential role of medicinal mushrooms in breast cancer treatment: current knowledge and future perspectives. Int J Med Mushr 7:141–155CrossRefGoogle Scholar
  285. Phillips KM, Ruggio DM, Horst RL, Minor B, Simon RR et al (2011a) Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. J Agric Food Chem 59(14):7841–7853PubMedCrossRefGoogle Scholar
  286. Phillips KM, Ruggio DM, Haytowitz DB (2011b) Folate composition of 10 types of mushrooms determined by liquid chromatography–mass spectrometry. Food Chem 129:630–636CrossRefGoogle Scholar
  287. Pickup JC, Mattock MB, Chusney GD, Burt D (1997) NIDDM as a disease of the innate immune system: association of acute phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40:1286–1292PubMedCrossRefGoogle Scholar
  288. Popov D (2011) Novel protein tyrosine phosphatase 1B inhibitors: interaction requirements for improved intracellular efficacy in type 2 diabetes mellitus and obesity control. Biochem Biophys Res Commun 410:377–381PubMedCrossRefGoogle Scholar
  289. Popović M, Vukmirović S, Stilinović N, Čapo I, Jakovljević V (2010) Anti-oxidative activity of an aqueous suspension of commercial preparation of the mushroom Coprinus comatus. Molecules 15:4564–4571PubMedCrossRefGoogle Scholar
  290. Poraj-Kobielska M, Kinne M, Ullrich R, Scheibner K, Kayser G, Hammel KE, Hofrichter M (2011) Preparation of human drug metabolites using fungal peroxygenases. Biochem Pharmacol 82:789–796PubMedCrossRefGoogle Scholar
  291. Porta M, Allione A (2004) Current approaches and perspectives in the medical treatment of diabetic retinopathy. Pharmacol Therapeut 103:167–177CrossRefGoogle Scholar
  292. Potenza MV, Mechanick JI (2009) The metabolic syndrome: definition, global impact, and pathophysiology. Nutr Clin Pract 24:560–577PubMedCrossRefGoogle Scholar
  293. Poucheret P, Verma S, Grynpas MD, McNeill JH (1998) Vanadium and diabetes. Mol Cell Biochem 188(1–2):73–80PubMedCrossRefGoogle Scholar
  294. Poucheret P, Fons F, Rapior S (2006) Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogam Mycol 27:311–333Google Scholar
  295. Pozzilli P, Buzzetti R (2007) A new expression of diabetes: double diabetes. Trends Endocrinol Metab 18:52–57PubMedCrossRefGoogle Scholar
  296. Pozzilli P, Guglielmi C (2009) Double diabetes: a mixture of type 1 and type 2 diabetes in youth. Endocr Dev 14:151–166PubMedCrossRefGoogle Scholar
  297. Pozzilli P, Chiara G, Caprio S, Buzzetti R (2011) Obesity, autoimmunity, and double diabetes in youth. Diabetes Care 34:S166–S170PubMedCrossRefGoogle Scholar
  298. Prasad K (2000) Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. Int J Angiol 9:220–225PubMedCrossRefGoogle Scholar
  299. Preuss HG, Echard B, Bagchi D, Perricone NV, Zhuang C (2007) Enhanced insulin-hypoglycemic activity in rats consuming a specific glycoprotein extracted from maitake mushroom. Mol Cell Biochem 306:105–113PubMedCrossRefGoogle Scholar
  300. Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24:613–621PubMedCrossRefGoogle Scholar
  301. Purnell J (2008) Beyond the diabetes control and complications trial -addressing weight gain in type 1 diabetes. US Endocrinology 4:62–64Google Scholar
  302. Qi L, Parast L, Cai T, Powers C, Gervino EV, Hauser TH, Hu FB, Doria A (2011) Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J Am Coll Cardiol 58(25):2675–2682PubMedCrossRefGoogle Scholar
  303. Qiang X, YongLie C, QianBing W (2009) Health benefit application of functional oligosaccharides. Carbohyd Polym 77:435–441CrossRefGoogle Scholar
  304. Raji KP, Nataraian P, Kurup GM (2009) Anti-hyperglycemic activity of mushroom on serum glucose levels in alloxan induced diabetic rats. Bioscan 4:231–235Google Scholar
  305. Ranjbar SH, Larijani B, Abdollahi M (2011) Recent update on animal and human evidences of promising anti-diabetic medicinal plants: a mini-review of targeting new drugs. Asian J Animal Veterinary Advan 6:1271–1275CrossRefGoogle Scholar
  306. Rapior S, Courtecuisse R, Francia C, Siroux Y (2000) Activités biologiques des champignons: recherches actuelles sur les facteurs de risque des maladies cardio-vasculaires. Annales de la Société d’Horticulture et d’Histoire Naturelle de l’Hérault 140:26–31Google Scholar
  307. Rathee S, Rathee D, Rathee D, Kumar V, Rathee P (2012) Mushrooms as therapeutic agents. Revista Brasileira de Farmacognosia 22(2):459–474CrossRefGoogle Scholar
  308. Reimann M, Bonifacio E, Solimena M, Schwarz PEH, Ludwig B, Hanefeld M, Bornstein SR (2009) An update on preventive and regenerative therapies in diabetes mellitus. Pharmacol Therapeut 121:317–331CrossRefGoogle Scholar
  309. Reis FS, Pereira E, Barros L, João Sousa M, Martins A, Ferreira ICFR (2011) Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules 16:4328–4338PubMedCrossRefGoogle Scholar
  310. Reshetnikov SV, Wasser SP, Tan KK (2001) Higher Basidiomycota as a source of antitumor and immunostimulating polysaccharides. Int J Med Mushr 3:361–394Google Scholar
  311. Riveline JP, Schaepelynck P, Chaillous L, Renard E, Sola-Gazagnes A et al (2012) Assessment of patient-led or physician-driven continuous glucose monitoring in patients with poorly controlled type 1 diabetes using basal-bolus insulin regimens. Diabetes Care 35:965–971PubMedCrossRefGoogle Scholar
  312. Romain AJ, Desplan M, Carayol M, Ninot G, Fedou C (2011) Effect of breakfast on the maximum lipid oxidation level in exercise. Diabetes Metab 37:A19CrossRefGoogle Scholar
  313. Romain AJ, Bernard P, Attalin V, Gernigon C, Ninot G, Avignon A (2012) Health-related quality of life and stages of behavior change for exercise in overweight/obese individuals. Diabetes Metab doi:10.1016/j.diabet.2012.03.003
  314. Rosenbloom AL, Joe JR, Young RS, Winter WE (1999) Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22:345–354PubMedCrossRefGoogle Scholar
  315. Rubel RL, Santa HSD, Fernandes LC, Bonatto SJR, Bello S et al (2011) Hypolipidemic and antioxidant properties of Ganoderma lucidum (Leyss:Fr) Karst used as a dietary supplement. World J Microbiol Biotechnol 27:1083–1089CrossRefGoogle Scholar
  316. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806PubMedCrossRefGoogle Scholar
  317. Sanodiya BS, Thakur GS, Baghel RK, Prasad GBKS, Bisen PS (2009) Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharmaceutical Biotechnol 10:717–742CrossRefGoogle Scholar
  318. Sato T, Tai Y, Nunoura Y, Yajima Y, Kawashima S, Tanaka K (2002) Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull 25:81–86PubMedCrossRefGoogle Scholar
  319. Sattar N (2012) Biomarkers for diabetes prediction, pathogenesis or pharmacotherapy guidance? Past, present and future possibilities. Diabetic Med 29:5–13PubMedCrossRefGoogle Scholar
  320. Scheen AJ (2011) Linagliptin for the treatment of type 2 diabetes (pharmacokinetic evaluation). Expert Opinion on drug metab Toxicol 7:1561–1576CrossRefGoogle Scholar
  321. Schneider KL, Pagoto SL, Handschin B, Panza E, Bakke S, Liu Q, Blendea M, Ockene IS, Ma Y (2011) Design and methods for a pilot randomized clinical trial involving exercise and behavioral activation to treat comorbid type 2 diabetes and major depressive disorder. Ment Health Phys Act 4:13–21PubMedCrossRefGoogle Scholar
  322. Seino S, Takahashi H, Takahashi T, Shibasaki T (2012) Treating diabetes today: a matter of selectivity of sulphonylureas. Diabetes Obes Metab 14:9–13PubMedCrossRefGoogle Scholar
  323. Seto SW, Lam TY, Tam HL, Au AL, Chan SW, Wu JH, Yu PH, Leung GP, Ngai SM, Yeung JH, Leung PS, Lee SM, Kwan YW (2009) Novel hypoglycemic effects of Ganoderma lucidum water-extract in obese/diabetic (+db/+db) mice. Phytomedicine 16:426–436PubMedCrossRefGoogle Scholar
  324. Shang D, Li Y, Wang C, Wang X, Yu Z, Fu X (2011) A novel polysaccharide from Se-enriched Ganoderma lucidum induces apoptosis of human breast cancer cells. Oncol Rep 25:267–272PubMedGoogle Scholar
  325. Shavit E (2009) Over-the-Counter Medicinal Mushrooms. Fungi 2:15–19Google Scholar
  326. Shaw JE, Sicree RA, Zimment PZ (2010) Global estimates of the prevalence of diabetes for 2110 and 2030. Diabetes Res Clin Pract 87:4–14PubMedCrossRefGoogle Scholar
  327. Shawahna R, Nisar-ur-Rahman N, Ahmad M, Debray M, Decleves X, Yliperttula M, Blom M (2012) Prescribers’ perspectives of the socioeconomic status and important indicators affecting prescribing behavior in a developing country. Central European J Med (CEJMed) 7:1–8CrossRefGoogle Scholar
  328. Shechter Y (1990) Insulin-mimetic effects of vanadate. Possible implications for future treatment of diabetes. Diabetes 39:1–5PubMedCrossRefGoogle Scholar
  329. Shi B, Wang Z, Jin H, Chen YW, Wang Q, Qian Y (2009) Immunoregulatory Cordyceps sinensis increases regulatory T cells to Th17 cell ratio and delays diabetes in NOD mice. Int Immunopharmacol 9:582–586PubMedCrossRefGoogle Scholar
  330. Shin S, Lee S, Kwon J, Moon S, Lee S, Lee CK, Cho K, Ha NJ, Kim K (2009) Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Immune Netw 9:98–105PubMedCrossRefGoogle Scholar
  331. Shu CH, Lin KJ, Wen BJ (2004) Effects of culture pH on the production of bioactive polysaccharides by Agaricus blazei in batch cultures. J Chem Technol Biotechnol 79:998–1002CrossRefGoogle Scholar
  332. Sliva D (2003) Ganoderma lucidum (Reishi) in cancer treatment. Integr Cancer Ther 2:358–364PubMedCrossRefGoogle Scholar
  333. Smiderle FR, Olsen LM, Ruthes AC, Czelusniak PA, Santana-Filho AP, Sassaki GL, Gorin PAJ, Iacomini M (2012) Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohyd Polym 87:368–376CrossRefGoogle Scholar
  334. Smith KJ, Pagé V, Gariépy G, Béland M, Badawi G, Schmitz N (2012) Self-rated diabetes control in a Canadian population with type 2 diabetes: associations with health behaviours and outcomes. Diabetes Res Clin Pract 95:162–168PubMedCrossRefGoogle Scholar
  335. Sobngwi E, Ndour-Mbaye M, Boateng KA, Ramaiya KL, Njenga EW, Diop SN, Mbanya JC, Ohwovoriole AE (2012) Type 2 diabetes control and complications in specialised diabetes care centres of six sub-Saharan African countries: The Diabcare Africa study. Diabetes Res Clin Pract 95:30–36PubMedCrossRefGoogle Scholar
  336. Song G, Du Q (2010) Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system. J Chromatogr A 1217:5930–5934PubMedCrossRefGoogle Scholar
  337. Sorimachi K, Koge T (2008) Agaricus blazei water extracts as alternative medicines. Curr Pharm Anal 4:39–43CrossRefGoogle Scholar
  338. Stadler M, Pacini G, Petrie J, Luger A, Anderwald C, RISC Investigators (2009) Beta cell (dys)function in non-diabetic offspring of diabetic patients. Diabetologia 52:2435–2444PubMedCrossRefGoogle Scholar
  339. Stuart MJ, Baune BT (2012) Depression and type 2 diabetes: inflammatory mechanisms of a psychoneuroendocrine co-morbidity. Neurosci Biobehav Rev 36:658–676PubMedCrossRefGoogle Scholar
  340. Stumvoll M, Tataranni PA, Stefan N, Vozarova B, Bogardus C (2003) Glucose allostasis. Diabetes 52:903–909PubMedCrossRefGoogle Scholar
  341. Sun JE, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, Xu ZH (2008) Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol 118:7–13PubMedCrossRefGoogle Scholar
  342. Sysouphanthong P, Thongkantha S, Zhao R, Soytong K, Hyde KD (2010) Mushroom diversity in sustainable shade tea forest and the effect of fire damage. Biodivers Conservation 19:1401–1415CrossRefGoogle Scholar
  343. Takeujchi H, He P, Mooi LY (2004) Reductive effect of hot-water extracts from woody ear (Auricularia auricula-judae Quél.) on food intake and blood glucose concentration in genetically diabetic KK-Ay mice. J Nutr Sci Vitaminol (Tokyo) 50(4):300–304CrossRefGoogle Scholar
  344. Talbot F, Nouwen A (2000) A review of the relationship between depression and diabetes in adults: is there a link? Diabetes Care 23:1556–1562PubMedCrossRefGoogle Scholar
  345. Taveira VC, Novaes MR, Dos Anjos RM, de Silva MF (2008) Hematologic and metabolic effects of dietary supplementation with Agaricus sylvaticus fungi on rats bearing solid walker 256 tumor. Exp Biol Med (Maywood) 233:1341–1347CrossRefGoogle Scholar
  346. Teng BS, Wang CD, Yang HJ, Wu JS, Zhang D, Zheng M, Fan ZH, Pan D, Zhou P (2011) A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. J Agric Food Chem 59:6492–6500PubMedCrossRefGoogle Scholar
  347. Teng BS, Wang CD, Zhang D, Wu JS, Pan D, Pan LF, Yang HJ, Zhou P (2012) Hypoglycemic effect and mechanism of a proteoglycan from Ganoderma lucidum on streptozotocin-induced type 2 diabetic rats. Eur Rev Med Pharmacol Sci 16:166–175PubMedGoogle Scholar
  348. Thielen V, Scheen A, Bringer J, Renard E (2010) Attempt to improve glucose control in type 2 diabetic patients by education about real-time glucose monitoring. Diabetes Metab 36:240–243PubMedCrossRefGoogle Scholar
  349. Thornalley PJ (2002) Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 50:37–57PubMedCrossRefGoogle Scholar
  350. Thyagarajan-Sahu A, Lane B, Sliva D (2011) ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK. BMC Complement Altern Med 11:74PubMedCrossRefGoogle Scholar
  351. Tie L, Yang HQ, An Y, Liu SQ, Han J, Xu Y, Hu M, Li WD, Chen AF, Lin ZB, Li XJ (2012) Ganoderma lucidum polysaccharide accelerates refractory wound healing by inhibition of mitochondrial oxidative stress in type 1 diabetes. Cell Physiol Biochem 29:583–594PubMedCrossRefGoogle Scholar
  352. Tourlouki E, Matalas AL, Panagiotakos DB (2009) Dietary habits and cardiovascular disease risk in middle-aged and elderly populations: a review of evidence. Clin Interv Aging 4:319–330PubMedCrossRefGoogle Scholar
  353. Ulziijargal E, Mau JL (2011) Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. Int J Med Mushr 13:343–349CrossRefGoogle Scholar
  354. Vinicor F (1998) The public health burden of diabetes and the reality of the limits. Diabetes Care 21:C15–C18PubMedGoogle Scholar
  355. Volman JJ, Mensink RP, van Griensven LJ, Plat J (2010) Effects of alpha-glucans from Agaricus bisporus on ex vivo cytokine production by LPS and PHA-stimulated PBMCs; a placebo-controlled study in slightly hypercholesterolemic subjects. Eur J Clin Nutr 64:720–726PubMedCrossRefGoogle Scholar
  356. Wachtel-Galor S, Tomlinson B, Benzie FF (2004) Ganoderma lucidum (‘Lingzhi’), a Chinese medicinal mushroom: biomarker responses in a controlled human supplementation study. Br J Nutr 91:263–269PubMedCrossRefGoogle Scholar
  357. Wang JCY, Hu SH, Wang JT, Chen KS, Chia YC (2005) Hypoglycemic effect of extract of Hericium erinaceus. J Sci Food Agr 85:641–646CrossRefGoogle Scholar
  358. Wang W, Fu C, Pan C, Chen W, Zhan S, Luan R et al (2009a) How do Type 2 diabetes mellitus-related chronic complications impact direct medical cost in four major cities of urban China? Value Health 12:923–929PubMedCrossRefGoogle Scholar
  359. Wang W, McGreevey WP, Fu C, Zhan S, Luan R, Chen W, Xu B (2009b) Type 2 diabetes mellitus in China: a preventable economic burden. Am J Manag Care 15:593–601PubMedGoogle Scholar
  360. Wang S, Meckling KA, Marcone MF, Kakuda Y, Tsao R (2011a) Can phytochemical antioxidant rich foods act as anti-cancer agents? Food Res Int 44:2545–2554CrossRefGoogle Scholar
  361. Wang CR, Ng TB, Li L, Fang JC, Jiang Y, Wen TY, Qiao WT, Li N, Liu F (2011b) Isolation of a polysaccharide with antiproliferative, hypoglycemic, antioxidant and HIV-1 reverse transcriptase inhibitory activities from the fruiting bodies of the abalone mushroom Pleurotus abalones. J Pharm Pharmacol 63:825–832PubMedCrossRefGoogle Scholar
  362. Wang CD, Teng BS, He YM, Wu JS, Pan D, Pan LF, Zhang D, Fan ZH, Yang HJ, Zhou P (2012) Effect of a novel proteoglycan PTP1B inhibitor from Ganoderma lucidum on the amelioration of hyperglycaemia and dyslipidaemia in db/db mice. British J Nutrition doi: 10.1017/S0007114512000153
  363. Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. J Med Plants Res 4:2598–2604Google Scholar
  364. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323–1332PubMedCrossRefGoogle Scholar
  365. Wasser SP, Akavia E (2008) Regulatory issues of mushrooms as functional foods and dietary supplements: safety and efficacy. In: Cheung PCK (ed) Mushrooms as functional foods. Wiley, New York, pp 199–221CrossRefGoogle Scholar
  366. Wasser SP, Weiss AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19:65–96PubMedGoogle Scholar
  367. Welti S, Courtecuisse R (2010) The Ganodermataceae in the French West Indies (Guadeloupe and Martinique). Fungal Divers 43:103–126CrossRefGoogle Scholar
  368. Weng CJ, Yen GC (2010) The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis. Clin Exp Metastasis 27:361–369PubMedCrossRefGoogle Scholar
  369. White NH, Sun W, Cleary PA, Danis RP, Davis MD, Hainsworth DP, Hubbard LD, Lachin JM, Nathan DM (2008) Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch Ophthalmol 126:1707–1715PubMedCrossRefGoogle Scholar
  370. WHO (2011) World Health Organization. Diabetes program
  371. Wild S, Roglic F, Green A, Sucree R, King H (2004) Global prevalence of diabetes: estimated for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053PubMedCrossRefGoogle Scholar
  372. Winkley K, Sallis H, Kariyawasam D, Leelarathna LH, Chalder T, Edmonds ME, Stahl D, Ismail K (2012) Five-year follow-up of a cohort of people with their first diabetic foot ulcer: the persistent effect of depression on mortality. Diabetologia 55:303–310PubMedCrossRefGoogle Scholar
  373. Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao R, Callac P, Moukha S, Férandon C, Chukeatirote E, Hyde KD (2012) Agaricus subrufescens: a review. Saudi J Biol Sci 19:131–146CrossRefGoogle Scholar
  374. Wolden-Kirk H, Overbergh L, Christesen HT, Brusgaard K, Mathieu C (2011) Vitamin D and diabetes: its importance for beta cell and immune function. Mol Cell Endocrinol 347:106–120PubMedCrossRefGoogle Scholar
  375. Won SY, Park EH (2005) Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J Ethnopharmacol 96:555–561PubMedCrossRefGoogle Scholar
  376. Wong KH, Vikineswary S, Noorlidah A, Umah RK, Murali N (2009) Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull. :Fr.) Pers. Extracts. Food Technol Biotechnol 47:47–55Google Scholar
  377. Wong YY, Moon A, Duffin R, Barateig AB, Meijer HA, Clemens MJ, de Moor CH (2010) Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem 285:2610–2621PubMedCrossRefGoogle Scholar
  378. Wu D, Pae M, Ren Z, Guo Z, Smith D, Meydani SN (2007) Dietary supplementation with white button mushroom enhances natural killer cell activity in C57BL/6 mice. J Nutr 137:1472–1477PubMedGoogle Scholar
  379. Wu SH, Nilsson HR, Chen CT, Yu SY, Hallenberg N (2010) The white-rotting genus Phanerochaete is polyphyletic and distributed throughout the phleboid clade of the Polyporales (Basidiomycota). Fungal Divers 42:107–118CrossRefGoogle Scholar
  380. Wu GS, Lu JJ, Guo JJ, Li YB, Tan W, Dang YY, Zhong ZF, Xu ZT, Chen XP, Yi-Tao Wang YT (2012) Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 83:408–414PubMedCrossRefGoogle Scholar
  381. Xiao C, Wu QP, Tan JB, Cai W, Yang XB, Zhang JM (2011) Inhibitory effects on alpha-glucosidase and hypoglycemic effects of the crude polysaccharides isolated from 11 edible fungi. J Med Plants Res 5:6963–6967Google Scholar
  382. Xie W, Du L (2011) Diabetes is an inflammatory disease: evidence from traditional Chinese medicines. Diabetes Obes Metab 13:289–301PubMedCrossRefGoogle Scholar
  383. Xin X, Chong P, Chengjian Y, Yitong Z, Hongyu X, Zhenming L, Zhenghong X (2010) Antihyperglycemic and antilipidperoxidative effects of polysaccharides extracted from medicinal mushroom Chaga, Inonotus obliquus (Pers.: Fr.) Pilat (Aphyllophoromycetideae) on alloxan-diabetes mice. Int J Med Mushr 12:235–244CrossRefGoogle Scholar
  384. Xu X, Pang C, Yang C, Zheng Y, Xu H, Lu Z, Xu Z (2010a) Antihyperglycemic and antilipidperoxidative effects of polysaccharides extracted from medicinal mushroom Chaga, Inonotus obliquus (Pers.: Fr.) Pilat (Aphyllophoromycetideae) on alloxan-diabetes mice. Int J Med Mushr 12:235–244CrossRefGoogle Scholar
  385. Xu HY, Sun JE, Lu ZM, Zhang XM, Dou WF, Xu ZH (2010b) Beneficial effects of the ethanol extract from the dry matter of a culture broth of Inonotus obliquus in submerged culture on the antioxidant defence system and regeneration of pancreatic beta-cells in experimental diabetes in mice. Nat Prod Res 24:542–553PubMedCrossRefGoogle Scholar
  386. Xu X, Wu Y, Chen H (2011) Comparative antioxidative characteristics of polysaccharide-enriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus. Food Chem 127:74–79CrossRefGoogle Scholar
  387. Yamac M, Kanbak G, Zeytinoglu M, Bayramoglu G, Senturk H, Uyanoglu M (2008) Hypoglycemic effect of Lentinus strigosus (Schwein.) Fr. crude exopolysaccharide in streptozotocin-induced diabetic rats. J Med Food 11:513–517PubMedCrossRefGoogle Scholar
  388. Yamac M, Zeytinoglu M, Kanbak G, Bayramoglu G, Senturk H (2009) Hypoglycemic effect of crude exopolysaccharides produced by Cerrena unicolor, Coprinus comatus, and Lenzites betulina isolates in streptozotocin-induced diabetic rats. Pharm Biol 47:168–174CrossRefGoogle Scholar
  389. Yamac M, Kanbak G, Zeytinoglu M, Senturk H, Bayramoglu G, Dokumacioglu A, Van Griensven LJLD (2010) Pancreas protective effect of button mushroom Agaricus bisporus (J.E. Lange) Imbach (Agaricomycetidae) extract on rats with streptozotocin-induced diabetes. Int J Med Mushr 124:379–389CrossRefGoogle Scholar
  390. Yamamoto K, Kimura T (2010) Dietary Sparassis crispa (Hanabiratake) ameliorates plasma levels of adiponectin and glucose in type 2 diabetic mice. J Health Sci 56:541–546CrossRefGoogle Scholar
  391. Yang ZL (2011) Molecular techniques revolutionize knowledge of basidiomycete evolution. Fungal Divers 50:47–58CrossRefGoogle Scholar
  392. Yang BK, Kim DH, Jeong SC, Das S, Choi YS, Shin JS, Lee SC, Song CH (2002) Hypoglycemic effect of a Lentinus edodes exo-polymer produced from a submerged mycelial culture. Biosci Biotechnol Biochem 66:937–942PubMedCrossRefGoogle Scholar
  393. Yang BK, Kim GN, Jeong YT, Jeong H, Mehta P, Song CH (2008) Hypoglycemic effects of exo-biopolymers produced by five different medicinal mushrooms in STZ-induced diabetic rats. Mycobiol 36:45–49CrossRefGoogle Scholar
  394. Yates T, Khunti K, Wilmot EG, Brady E, Webb D, Srinivasan B, Henson J, Talbot D, Davies MJ (2012) Self-reported sitting time and markers of inflammation, insulin resistance, and adiposity. Am J Prev Med 42:1–7PubMedCrossRefGoogle Scholar
  395. Ye LB, Zheng X, Zhang J, Tang Q, Yang Y, Wang X, Li J, Liu YF, Pan YJ (2011) Biochemical characterization of a proteoglycan complex from an edible mushroom Ganoderma lucidum fruiting bodies and its immunoregulatory activity. Food Res Int 44:367–372CrossRefGoogle Scholar
  396. Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26:1277–1294PubMedCrossRefGoogle Scholar
  397. Ying J, Mao X, Ma Q, Zong Y, Wen H (1987) Icons of Medicinal Fungi from China (translated, Yuehan X). Science Press, BeijingGoogle Scholar
  398. Yoo O, Lee DH (2006) Inhibition of sodium glucose cotransporter-1 expressed in Xenopus laevis oocytes by 4-acetoxyscirpendiol from Cordyceps takaomantana (anamorph = Paecilomyces tenuipes). Med Mycol l44:79–85CrossRefGoogle Scholar
  399. Yoo O, Son JH, Lee DH (2005) 4-Acetoxyscirpendiol of Paecilomyces tenuipes inhibits Na(+)/D-Glucose cotransporter expressed in Xenopus laevis oocytes. J Biochem Mol Biol 38:211–217PubMedCrossRefGoogle Scholar
  400. Yu R, Song L, Zhao Y, Bin W, Wang L, Zhang H, Wu Y, Ye W, Yao X (2004) Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia 75:465–472PubMedCrossRefGoogle Scholar
  401. Yu R, Yang W, Song L, Yan C, Zhang Z, Zhao Y (2007) Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohyd Polym 70:430–436CrossRefGoogle Scholar
  402. Yu J, Cui PJ, Zeng WL, Xie XL, Liang WJ, Lin GB, Zeng L (2009) Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem 117:42–47CrossRefGoogle Scholar
  403. Yu T, Shim J, Yang Y, Byeon SE, Kim JH, Rho HS, Park H, Sung GH, Kim TW, Rhee MH, Cho JY (2012) 3-(4-(tert-Octyl)phenoxy)propane-1,2-diol suppresses inflammatory responses via inhibition of multiple kinases. Biochem Pharmacol 83:1540–1551PubMedCrossRefGoogle Scholar
  404. Yuan Z, He P, Cui J, Takeuchi H (1998) Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricula-judae Quél. on genetically diabetic KK-Ay mice. Biosci Biotechnol Biochem 62:1898–1903PubMedCrossRefGoogle Scholar
  405. Yun YH, Han SH, Lee SJ, Ko SK, Lee CK, Ha NJ, Kim KJ (2003) Anti-diabetic effects of CCCA, CMKSS and Cordycepin from Cordyceps militaris and the immune responses in streptozotocin-induced diabetic mice. Nat Prod Sci 9:291–298Google Scholar
  406. Zaidman BZ, Wasser SP, Nevo E, Mahajna J (2008) Coprinus comatus and Ganoderma lucidum interfere with androgen receptor function in LNCaP prostate cancer cells. Mol Biol Rep 35:107–117PubMedCrossRefGoogle Scholar
  407. Zhai L, Ballinger SW, Messina JL (2011) Role of reactive oxygen species in injury-induced insulin resistance. Mol Endocrinol 25:492–502PubMedCrossRefGoogle Scholar
  408. Zhang HN, Lin ZB (2004) Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta Pharmacol Sin 25:191–195PubMedGoogle Scholar
  409. Zhang CL, Ning Y (2011) Effect of dietary and lifestyle factors on the risk of gestational diabetes: review of epidemiologic evidence. Am J Clin Nutr 94:1975S–1979SPubMedCrossRefGoogle Scholar
  410. Zhang HN, He JH, Yuan L, Lin ZB (2003) In vitro and in vivo protective effect of Ganoderma lucidum polysaccharides on alloxan-induced pancreatic islets damage. Life Sci 73:2307–2319PubMedCrossRefGoogle Scholar
  411. Zhang G, Huang Y, Bian Y, Wong JH, Ng TB, Wang H (2006) Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl Microbiol Biotechnol 72:1152–1156PubMedCrossRefGoogle Scholar
  412. Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Anti-tumor polysaccharides from mushrooms: a review on their isolation, structural characteristics and antitumor activity. Trends Food Sci Technol 18:4–19CrossRefGoogle Scholar
  413. Zhang Z, Lian B, Cui F, Huang D, Chang W (2008) Comparison of regulating blood glucose effects of Ginkgo biloba leaf extract with and without biotransformation by Hericium erinaceus. Junwu Xuebao 27:420–430Google Scholar
  414. Zhang P, Chen ZH, Xiao B, Tolgor B, Hai Y, Bao HY, Yang ZL (2010a) Lethal amanitas of East Asia characterized by morphological and molecular data. Fungal Divers 42:119–133CrossRefGoogle Scholar
  415. Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, Nichols G (2010b) Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:293–301PubMedCrossRefGoogle Scholar
  416. Zhang YB, Zhao Y, Cui HF, Cao CY, Guo JY, Liu S (2011a) Comparison of hypoglycemic activity of fermented mushroom of Inonotus obliquus rich in vanadium and wild-growing I. obliquus. Biol Trace Element Res 144:1351–1357CrossRefGoogle Scholar
  417. Zhang Y, Li S, Wang X, Zhang L, Cheung PCK (2011b) Advances in lentinan: isolation, structure, chain conformation and bioactivities. Food Hydrocolloid 25:196–206CrossRefGoogle Scholar
  418. Zhao RL, Desjardin DE, Soytong K, Perry BA, Hyde KD (2010) A monograph of Micropsalliota in Northern Thailand based on morphological and molecular data. Fungal Divers 45:33–79CrossRefGoogle Scholar
  419. Zhao RL, Karunarathna SC, Raspé O, Parra LA, Guinberteau J, Moinard M, De Kesel A, Barroso G, Desjardin D, Courtecuisse R, Hyde KD, Guelly AK, Callac P (2011) Major clades in tropical Agaricus. Fungal Divers 51:279–296CrossRefGoogle Scholar
  420. Zhao-Long W, Xiao-Xia W, Wei-Ying C (2000) Inhibitory effect of Cordyceps sinensis and Cordyceps militaris on human glomerular mesangial cell proliferation induced by native LDL. Cell Biochem Funct 18:93–97PubMedCrossRefGoogle Scholar
  421. Zhong JJ, Tang YJ (2004) Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv Biochem Eng Biotechnol 87:25–59PubMedGoogle Scholar
  422. Zhong JJ, Xiao JH (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol 113:79–150PubMedGoogle Scholar
  423. Zhou GT, Han CC (2008) The co-effect of vanadium and fermented mushroom of Coprinus comatus on glycaemic metabolism. Biol Trace Element Res 124:20–27CrossRefGoogle Scholar
  424. Zhu JS, Halpern GM, Jones K (1998a) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. Part I1. J Altern Complement Med 4:289–303PubMedCrossRefGoogle Scholar
  425. Zhu JS, Halpern GM, Jones K (1998b) The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis. Part II. J Altern Complement Med 4:429–457PubMedCrossRefGoogle Scholar
  426. Zimmet PZ, McCarty DJ, de Courten MP (1997) The global epidemiology of non-insulin-dependent diabetes mellitus and the metabolic syndrome. J Diabetes Complications 11(2):60–68PubMedCrossRefGoogle Scholar

Copyright information

© Mushroom Research Foundation 2012

Authors and Affiliations

  1. 1.Institute of Excellence in Fungal ResearchMae Fah Luang UniversityChiang RaiThailand
  2. 2.School of ScienceMae Fah Luang UniversityChiang RaiThailand
  3. 3.Department of Botany, Faculty of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  4. 4.Faculty of PharmacyUniversity Montpellier 1, UMR 5175 CEFEMontpellier Cedex 5France
  5. 5.Botany and Microbiology Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations