Fungal Diversity

, 50:189 | Cite as

The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens

  • Dhanushka Udayanga
  • Xingzhong Liu
  • Eric H. C. McKenzie
  • Ekachai Chukeatirote
  • Ali H. A. Bahkali
  • Kevin D. Hyde


The genus Phomopsis (teleomorph Diaporthe) comprises phytopathologically important microfungi with diverse host associations and a worldwide distribution. Species concepts in Phomopsis have been based historically on morphology, cultural characteristics and host affiliation. This paper serves to provide an overview of the current status of the taxonomy in Phomopsis with special reference to biology, applications of various species, species concepts, future research perspectives and names of common pathogens, the latter being given taxonomic reappraisal. Accurate species identification is critical to understanding disease epidemiology and in developing effective control measures for plant diseases. Difficulties in accurate species identification using morphology have led to the application of alternative approaches to differentiate species, including virulence and pathogenicity, biochemistry, metabolites, physiology, antagonism, molecular phylogenetics and mating experiments. Redefinition of Phomopsis/Diaporthe species has been ongoing, and some species have been redefined based on a combination of molecular, morphological, cultural, phytopathological and mating type data. Rapid progress in molecular identification has in particular revolutionized taxonomic studies, providing persuasive genetic evidence to define the species boundaries. A backbone ITS based phylogenetic tree is here in generated using the sequences derived from 46 type, epitype cultures, and vouchers and is presented as a rough and quick identification guide for species of Phomopsis. The need for epitypification of taxonomic entities and the need to use multiple loci in phylogenies that better reflect species limits are suggested. The account of names of phytopathogens currently in use are listed alphabetically and annotated with a taxonomic entry, teleomorph, associated hosts and disease symptoms, including brief summaries of taxonomic and phylogenetic research. Available type culture information and details of gene sequences derived from type cultures are also summarized and tabulated.


Anamorph Antagonism Biocontrol Canker Chemotype Endophyte Epitypification Genetic transformation Mating type Molecular phylogeny Pathogen Morphology Mycotoxins Quarantine 



This project is supported by the Global Research Network for Fungal Biology, King Saud University and State Key Laboratory of Mycology, Institute of Microbiology, the latter by grant NSFC 30625001. Dhanushka Udayanga thanks the State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing and the Mushroom Research Foundation, Chiang Mai, Thailand for a postgraduate scholarship. Cai Lei (CAS, Beijing) is thanked for the suggestions to improve the manuscript. Pedro W. Crous (CBS Netherland), Hong-Bing Ma (Shandong Agricultural University, China), and Roger Shivas (Queensland plant pathology herbarium, Australia) are thanked for unpublished sequence information and type cultures. Belinda Rawnsley (South Australian Research and Development Institute: SARDI, Australia), Sam Markell (North Dakota State University, USA) and Thomas Chase (South Dakota University, USA) are thanked for allowing us to use the pictures provided.


  1. Abang MM, Abraham WR, Asiedu R, Hoffmann P, Wolf G, Winter S (2009) Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam (Dioscorea spp.). Mycol Res 113:130–140PubMedCrossRefGoogle Scholar
  2. Abd-Elsalam KA, Yassin MA, Moslem MA, Bahkali AH, de Wit PJGM, McKenzie EHC, Stephenson S, Cai L, Hyde KD (2010) Culture collections are becoming the herbaria for fungal pathogens. Fungal Divers 45:21–32. doi: 10.1007/s13225-010-0063-z CrossRefGoogle Scholar
  3. Alfieri JR, Langdon KR, Wehlburg C, Kimbrough JW (1984) Index of plant diseases in Florida (Revised). Fla Dept Agric and Consumer Serv Div Plant Ind Bull 11:1–389Google Scholar
  4. Aly AN, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16. doi: 10.1007/s13225-010-0034-4 CrossRefGoogle Scholar
  5. An ZQ, Wang W, Liu XZ, Bennett JW (2010) China’s fungal genomics initiative: a whitepaper. Mycology 1:1–8CrossRefGoogle Scholar
  6. Anco DJ, Kim S, Mitchell TK, Madden LV, Ellis MA (2009) Transformation of Phomopsis viticola with the green fluorescent protein. Mycologia 101:8538–8558. doi: 10.3852/09-007 CrossRefGoogle Scholar
  7. Anderson RG, Hartman JR (1983) Phomopsis twig blight on weeping figs indoors: a case study. Foliage Digest 6:38–58Google Scholar
  8. Anonymous (1960) Index of plant diseases in the United States. USDA Agric Handb 165:1–531Google Scholar
  9. Ash GJ (2010) The science, art and business of successful bioherbicides. Biol Control 52:230–240CrossRefGoogle Scholar
  10. Ash GJ, Stodart B, Sakuanrungsirikul S, Anschaw E, Crump N, Hailstones D, Harper JDI (2010) Genetic characterization of a novel Phomopsis sp., a putative biocontrol agent for Carthamus lanatus. Mycologia 102:54–61PubMedCrossRefGoogle Scholar
  11. Auld BA, Morin L (1995) Constraints in the development of bioherbicides. Weed Technol 3:638–652Google Scholar
  12. Aveskamp MM, Gruyter JD, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related genera. Stud Mycol 65:1–60PubMedCrossRefGoogle Scholar
  13. Bailey KL, Boyetchko SM, Langle T (2010) Social and economic drivers shaping biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:222–229CrossRefGoogle Scholar
  14. Barreto RW, Evans HC, Ellison CA (1995) The mycobiota of the weed Lantana camara in Brazil, with particular reference to biological control. Mycol Res 99:769–782CrossRefGoogle Scholar
  15. Bausa Alcalde M (1952) Algunos micromi-cetos recolectados por el Prof. Caballero Segares en Valencia. Anales Inst Bot Cavanilles 10:229–255Google Scholar
  16. Bega RV (1978) Phomopsis lokoyae outbreak in a California forest nursery. Plant Dis Report 62:567–569Google Scholar
  17. Benschop K, Tewari JP, Toop EW (1984) Phomopsis twig die-back of some woody interior ornamentals in Alberta. Can Plant Dis Surv 64:29–31Google Scholar
  18. Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot 58:4019–4026. doi: 10.1093/jxb/erm298 PubMedCrossRefGoogle Scholar
  19. Bettucci L, Alonso RM (1997) A comparative study of fungal populations in healthy and symptomatic twigs of Eucalyptus grandis in Uruguay. Mycol Res 101:1061–1064CrossRefGoogle Scholar
  20. Bills GF, Giacobbe RA, Lee SH, Peláez F, Tkacz JS (1992) Tremorgenic mycotoxins, paspalitrem A and C, from a tropical Phomopsis. Mycol Res 96:977–983CrossRefGoogle Scholar
  21. Birren B, Fink G, Lander ES (2002) Fungal genome initiative, white paper developed by the fungal research community. Whitehead Institute/MIT Center for Genome Research, Cambridge, MA 02141, USA.
  22. Bobev S (2009) Reference guide for the diseases of cultivated plants. Unknown journal or publisherGoogle Scholar
  23. Boddy L, Griffith GS (1989) Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41:41–73Google Scholar
  24. Botella L, Diez JJ (2011) Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers 47:9–18. doi: 10.1007/s13225-010-0061-1 CrossRefGoogle Scholar
  25. Brayford D (1990) Variation in Phomopsis isolates from Ulmus species in the British Isles and Italy. Mycol Res 94:691–697CrossRefGoogle Scholar
  26. Brooks F (2004) List of plant diseases in American Samoa. Land Grant Technical Report: 41. American Samoa Community College Land Grant Program
  27. Bunyapaiboonsri T, Yoiprommarat S, Srikitikulchai P, Srichomthong K, Lumong S (2010) Oblongolides from the endophytic fungus Phomopsis sp. BCC 9789. J Nat Prod 73:55–59Google Scholar
  28. Bussaban B, Lumyong L, Lumyong P, McKenzie EHC, Hyde KD (2001) Endophytic fungi from Amomum siamense. Can J Microbiol 47:943–948PubMedGoogle Scholar
  29. Butler G (2010) Fungal sex and pathogenesis. Clin Microbiol Rev 23:140–159PubMedCrossRefGoogle Scholar
  30. Cai L, Hyde KD, Taylor PWJ, Weir B, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204Google Scholar
  31. Cai L, Udayanga D, Manamgoda DS, Maharachhikumbura SSN, Liu XZ, Hyde KD (2011) A case of reinvent tropical plant pathogens. Trop plant pathol. SubmittedGoogle Scholar
  32. Cannon PF, Bridge PD, Monte E (2000) Linking the past, present, and future of Colletotrichum systematics. In: Prusky D, Freeman S, Dickman MB (eds) Colletotrichum: host specificity, pathology, and host pathogen interaction. APS, St. Paul, pp 1–20Google Scholar
  33. Carriere JB, Petrov M (1990) Diaporthe (Phomopsis) sp., a new pathogen of cocklebur (Xanthium italicum Moretti) and of sunflower (Helianthus annuus L.). Helia 13:93–106Google Scholar
  34. Castlebury LA, Farr DF, Rossman AY, Jaklitsch WJ (2003) Diaporthe angelicae comb. nov., a modern description and placement of Diaporthopsis in Diaporthe. Mycoscience 44:203–208Google Scholar
  35. Chaeprasert S, Piapukiew J, Whalley AJS, Sihanonth P (2010) Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar 53:555–564. doi: 10.1515/BOT.2010.074 CrossRefGoogle Scholar
  36. Chang C, Cheng Y, Xiang M, Jiang Z, Qi P (2004) New species of Phomopsis on woody plants in Fujian province. Mycosystema 24:6–11Google Scholar
  37. Charudattan R (2000) Current status of biological control of weeds. In: Kennedy GG, Sutton TB (eds) Emerging technologies for integrated pest management: concepts, research, and implementation. APS, St. Paul, pp 269–288Google Scholar
  38. Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260. doi: 10.1023/A:1011477531101 CrossRefGoogle Scholar
  39. Charudattan R, Shabana YM, De Valario JT, Rosskopf EN (1996) Phomopsis species fungus useful as a broad-spectrum bioherbicide to control.US patent 5 510 316Google Scholar
  40. Chen WQ, Ntahimpera N, Morgan DP, Michailides TJ (2002a) Mycoflora of Pistacia vera in the central valley, California. Mycotaxon 83:147–158Google Scholar
  41. Chen YQ, Jiang Z, Qi PK (2002b) Application of RAPD and ITS region sequence analyses on classification and identification of Phomopsis. Mycosystema 21:39–46. doi: 10073515.0.2002-01-011 Google Scholar
  42. Cheng Z, Tang W, Xu S, Sun S, Huang B, Yan X, Chen Q, Lin Y (2006) First report of an endophyte (Diaporthe phaseolorum var. sojae) from Kandelia candel. J For Res 19:277–282. doi: 10.1007/s11676-008-0049-9 CrossRefGoogle Scholar
  43. Chi P, Jiang Z, Xiang M (2007) Flora Fungorum Sinicorum 34: Phomopsis. Science, BeijingGoogle Scholar
  44. Cho WD, Shin HD (2004) List of plant diseases in Korea, 4th edn. Korean Soc Plant PatholGoogle Scholar
  45. Claydon N, Grove JF, Pople M (1985) Elm bark beetle boring and feeding deterrents from Phomopsis oblonga. Phytochemistry 24:937–943. doi: 10.1016/S0031-9422(00)83157-X CrossRefGoogle Scholar
  46. Coomaraswamy U (1979) A Handbook to the fungi parasitic on the plants of Sri Lanka MAB-UNESCO 4:56–58Google Scholar
  47. Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428PubMedGoogle Scholar
  48. Cowley RB, Ash GJ, Harper DI, Orchard BA (2008) Using detached leaves and pods to screen for resistance to Phomopsis (Diaporthe toxica) in Lupinus albus. ‘Lupins for Health and Wealth’ Proceedings of the 12th International Lupin Conference. Fremantle, Western Australia. International Lupin Association, Canterbury, New ZealandGoogle Scholar
  49. Cowling WA, Wood PM, Brown APG (1984) The use of paraquat-diquuat herbicide for the detection of Phomopsis leptostromiformis infection in lupins. Australas Plant Pathol 13:45–46CrossRefGoogle Scholar
  50. Cristescu C (2003) A new species of Phomopsis Sacc. (Mitosporic fungi) in Romania. Rev Roum Boil–Biol Veget 48:45–49Google Scholar
  51. Cristescu C (2007) The morphology and anatomy of structure somatic and reproductive of species of Phomopsis Sacc. Bubak. Buletinul Grădinii Botanice Iaşi Tomul 14:19–27Google Scholar
  52. Crouch JA, Clarke BB, Hillman BI (2009) What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia 101:648–656. doi: 10.3852/08-231 PubMedCrossRefGoogle Scholar
  53. Crous PW (2005) Impact of molecular phylogenetics on the taxonomy and diagnostics of fungi. Bull OEPP/EPPO 35:47–51Google Scholar
  54. Crous PW, Phillips AJL, Baxter AP (2000) Phytopathogenic Fungi from South Africa. University of Stellenbosch, Department of Plant Pathology Press. 358ppGoogle Scholar
  55. Cunnington J (2003) Pathogenic fungi on introduced plants in Victoria. A host list and literature guide for their identification. Department of Primary Industries, Research VictoriaGoogle Scholar
  56. Dai CC, Yu BY, Zhao YT, Jiang JH, Yang QY (2006) The screening and identification of endophytic fungi from four species of family Euphorbiaceae and the strain sp. antibacterial activity. J Nanjing Forestry Univ (Nat Sci Edn) 30:79–83Google Scholar
  57. Dai CC, Yuan ZL, Yang QY, Shi QS, Li X (2008) The effect of increasing production of endophytes Phomopsis B3 on rice. Agric Sci Technol 9:39–42Google Scholar
  58. Dai CC, Chen Y, Tian L, Sh Y (2010) Correlation between invasion by endophytic fungus Phomopsis sp. and enzyme production. Afr J Agric Res 5:1324–1340Google Scholar
  59. Davis RD (2001) Asparagus stem blight recorded in Australia. Australas Pl Pathol 30:181–182CrossRefGoogle Scholar
  60. Diogo ELF, Santos JM, Phillips AJL (2010) Phylogeny, morphology and pathogenicity of Diaporthe and Phomopsis species on almond in Portugal. Fungal Divers 44:107–115CrossRefGoogle Scholar
  61. Du M, Schardl CL, Nuckles EM, Vaillancourt LJ (2005) Using mating-type gene sequences for improved phylogenetic resolution of Colletotrichum species complexes. Mycologia 97:641–658PubMedCrossRefGoogle Scholar
  62. Dudka IO, Heluta VP, Tykhonenko YY, Andrianova TV, Hayova VP, Prydiuk MP, Dzhagan, VV, Isikov VP (2004) Fungi of the Crimean Peninsula. M.G. Kholodny Institute of Botany, National Academy of Sciences of UkraineGoogle Scholar
  63. Dvořák M, Palovčíková D, Jankovský L (2006) The occurrence of endophytic fungus Phomopsis oblonga on elms in the area of southern Bohemia. J For Sci 52:531–535Google Scholar
  64. Ebbels DL, Allen DJ (1979) A supplementary and annotated list of plant diseases, pathogens and associated fungi in Tanzania. Phytopathol Pap 22:1–89Google Scholar
  65. Elena K (2006) First report of Phomopsis asparagi causing stem blight of asparagus in Greece. Plant Pathol 55:300CrossRefGoogle Scholar
  66. Fabre MJH (1883) Spheriacees du Departement de Vaucluse. Ann Sci Nat Bot Ser 6 1531–69Google Scholar
  67. Farr DF, Rossman AY (2011) Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. Retrieved February 6, 2011, from /fungaldatabases/Google Scholar
  68. Farr DF, Castlebury LA, Pardo-Schultheiss RA (1999) Phomopsis amygdali causes peach shoot blight of cultivated peach trees in the southeastern United States. Mycologia 91:1008–1015CrossRefGoogle Scholar
  69. Farr DF, Castlebury LA, Rossman AY (2002a) Morphological and molecular characterization of Phomopsis vaccinii and additional isolates of Phomopsis from blueberry and cranberry in the eastern United States. Mycologia 94:494–504PubMedCrossRefGoogle Scholar
  70. Farr DF, Castlebury LA, Rossman AY, Putnam ML (2002b) A new species of Phomopsis causing twig dieback of Vaccinium vitis-idaea (lingonberry). Mycol Res 106:745–752CrossRefGoogle Scholar
  71. Fathima SK, Bhat SS, Girish K (2004) Variation in Phomopsis azadirachtae, the incitant of die-back of neem. Indian Phytopathol 57:30–33Google Scholar
  72. French AM (1989) California plant disease host index. Calif. Dept. Food Agric, SacramentoGoogle Scholar
  73. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240PubMedCrossRefGoogle Scholar
  74. Garcia-Reyne A, López-Medrano F et al (2011) Cutaneous infection by Phomopsis longicolla in a renal transplant recipient from Guinea: first report of human infection by this fungus. Transpl Infect Dis 13:204–207. doi: 10.1111/j.1399-3062.2010.00570 PubMedCrossRefGoogle Scholar
  75. Gehlot P, Attitalla IH, Salleh B (2010) Anamorphic fungi: an overview. Middle-East J Sci Res 6:2010–2018Google Scholar
  76. Ginns JH (1986) Compendium of plant disease and decay fungi in Canada 1960–1980. Res Br Can Agric Publ 1813:416Google Scholar
  77. Girish K (2007) Studies on the biology and management of Phomopsis azadirachtae—the incitant of die-back disease on neem (Azadirachta indica A. Juss). Ph.D. thesis, University of Mysore. Mysore, IndiaGoogle Scholar
  78. Girish K, Bhat SS (2008) Phomopsis azadirachtae—the dieback of neem pathogen. Electron J Biol 4:112–119Google Scholar
  79. Girish K, Bhat SS, Raveesha KA (2009) PCR-based detection of Phomopsis azadirachtae in die-back affected neem seeds. Arch Phytopathol Plant Protect 42:626–632CrossRefGoogle Scholar
  80. Gleason ML, Ghabrial SA, Ferriss RS (1987) Serological detection of Phomopsis longicolla in soybean seeds. Phytopathology 77:371–375CrossRefGoogle Scholar
  81. González V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42. doi: 10.1007/s13225-010-0073-x CrossRefGoogle Scholar
  82. González-Fernández R, Prats E, Jorrín-Novo JV (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:1–36. doi: 10.1155/2010/932527 CrossRefGoogle Scholar
  83. Gorter GJMA (1977) Index of plant pathogens and the diseases they cause in cultivated plants in South Africa. Repub S Afr Dept Agric Techn Serv Plant Protect Res Inst Sci Bull 392:1–177Google Scholar
  84. Gratz LO (1942) The perfect stage of Phomopsis vexans. Phytopathology 32:540–542Google Scholar
  85. Greaves MP, Holloway PJ, Auld BA (1998) Formulation of microbial herbicides. In: Burges HD (ed) Formulation of microbial biopesticides, beneficial microorganisms, nematodes and seed treatments. Kluwer, London, pp 203–234Google Scholar
  86. Green RJ (1977) Dieback of black walnut seedlings caused by Phomopsis elaeagni. Plant Dis Report 61:5825–5884Google Scholar
  87. Guido MAD, Pollastro S, Carlucci A, Angelini RMDM, Faretra F (2003) Phomopsis viticola is easily transformed with hph and Bmlr genes. J Plant Pathol 85:43–52Google Scholar
  88. Gurgel LMS, Menezes M, Coelho RSB (2000) Differentiation of Phomopsis anacardii and Phomopsis mangiferae by electrophoretic patterns of proteins and isoenzymes. Summa Phytopathol 26:435–440Google Scholar
  89. Hahn GG (1930) Life-history studies of the species of Phomopsis occurring on conifers. Trans Br Mycol Soc 15:3293CrossRefGoogle Scholar
  90. Hahn GG (1940) Distribution and hosts of cedar blight in the United States. Plant Dis Report 24:52–57Google Scholar
  91. Hahn GG (1943) Taxonomy, distribution, and pathology of Phomopsis occulta and P. juniperovora. Mycologia 35:112–129CrossRefGoogle Scholar
  92. Hampson MC (1981) Phomopsis canker on weeping fig in Newfoundland. Can Plant Dis Surv 61:3–5Google Scholar
  93. Hawksworth DL (2011) Naming Aspergillus species: progress towards one name for each species. Med Mycol 49:70–76CrossRefGoogle Scholar
  94. Hawksworth DL, Rossman AY (1997) Where are all the undescribed fungi? Phytopathology 87:888–891PubMedCrossRefGoogle Scholar
  95. Hemtasin C, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K, Prabpai S, Kongsaeree P (2011) Cytotoxic pentacyclic and tetracyclic aromatic sesquiterpenes from Phomopsis archeri. J Nat Prod 74:609–613. doi: 10.1021/np100632g PubMedCrossRefGoogle Scholar
  96. Herbert PDN, Cywinska A, Ball SL, Dewaard JR (2003) Biological identification through DNA barcodes. Proc R Soc B Bio 270:312–321Google Scholar
  97. Hilton S (2000) Canadian plant disease survey. Agric Agri-Food Can 80:151Google Scholar
  98. Hobbs TW, Schmitthenner AF, Kuter GA (1985) A new Phomopsis species from soybean. Mycologia 77:535–544CrossRefGoogle Scholar
  99. Höhnel FV, Litschauer V (1906) Beiträge zur Kenntnis der Corticieen (I. Mitteilung). Sitzber K Akad Wiss Math.-Nat Kl 115:1549–1620Google Scholar
  100. Holliday P (1980) Fungus diseases of tropical crops. Cambridge University Press, CambridgeGoogle Scholar
  101. Horn WS, Schwartz RE, Simmonds MSJ, Blaney WM (1994) Isolation and characterization of phomodiol, a new antifungal from Phomopsis. Tetrahedron Lett 35:6037–6040. doi: 10.1016/0040-4039(94)88068-9 CrossRefGoogle Scholar
  102. Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 51:3969–3978. doi: 10.1016/0040-4020(95)00139-Y CrossRefGoogle Scholar
  103. Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1996) Variation in production of phomodiol and phomopsolide B by Phomopsis spp. Mycologia 88:588–595CrossRefGoogle Scholar
  104. Huang WY, Cai YZ, Hyde KD, Cork H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 Chinese medicinal plants. Fungal Divers 33:61–75Google Scholar
  105. Hyde KD (1991) Phomopsis mangrovei, from intertidal prop roots of Rhizophora spp. Mycol Res 95:1149–1151CrossRefGoogle Scholar
  106. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173Google Scholar
  107. Hyde KD, Zhang Y (2008) Epitypification: should we epitypify? J Zhejiang Univ-Sci 9:842–846CrossRefGoogle Scholar
  108. Hyde KD, Bussaban B, Paulus B, Crous PW, Lee S, McKenzie EHC, Photita W, Lumyong S (2007) Biodiversity of saprobic fungi. Biodivers Conserv 16:17–35CrossRefGoogle Scholar
  109. Hyde KD, Abd-Elsalam K, Cai L (2010a) Morphology: still essential in a molecular world. Mycotaxon 114:439–451CrossRefGoogle Scholar
  110. Hyde KD, Chomnunti P, Crous PWC, Groenewald JZ, Damm U, KoKo TW, Shivas RG, Summerell BA, Tan YP (2010b) A case for re-inventory of Australia’s plant pathogens. Persoonia 25:50–60. doi: 10.3767/003158510X548668 PubMedCrossRefGoogle Scholar
  111. Hyde KD, McKenzie EHC, KoKo TW (2011) Towards incorporating anamorphic fungi in a natural classification—checklist and notes for 2010. Mycosphere 2:1–88Google Scholar
  112. Inacio CA, Dianese JC, Carlos RME (1999) Phomopsis amaranthophila sp. nov., a new coelomycete pathogenic to Amaranthus tricolor in Brazil. Fitopatol Brasil 24:185–189Google Scholar
  113. Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018PubMedCrossRefGoogle Scholar
  114. Jiang SS, Ma HB (2010) A new species of Phomopsis on Castanea mollissima. Mycosystema 29:467–471Google Scholar
  115. Jones DR, Baker RHA (2007) Introductions of non-native plant pathogens into Great Britain, 1970–2004. Plant Pathol 56:891–910CrossRefGoogle Scholar
  116. Jurković D, Vrandečić K, Ćosić J, Riccioni L, Duvnjak T (2007) Morphological identification of Diaporthe/Phomopsis sp isolated from Xanthium italicum. Poljoprivreda (Osijek) 13:10–14Google Scholar
  117. Kajitani Y, Kanematsu S (2000) Diaporthe kyushuensis sp. nov., the teleomorph of the causal fungus of grapevine swelling arm in Japan, and its anamorph Phomopsis vitimegaspora. Mycoscience 41:111–114CrossRefGoogle Scholar
  118. Kanematsu S, Kobayashi T, Kudo A, Ohtsu Y (1999) Conidial morphology, pathogenicity and culture characteristics of Phomopsis isolates from peach, Japanese pear and apple in Japan. Ann Phytopathol Soc Jpn 65:264–273CrossRefGoogle Scholar
  119. Kanematsu S, Minaka N, Kobayashi T, Kudo A, Ohtsu Y (2000) Molecular phylogenetic analysis of ribosomal DNA internal transcribed spacer regions and comparison of fertility in Phomopsis isolates from fruit trees. J Gen Plant Pathol 66:191–201. doi: 10.1007/PL00012944 CrossRefGoogle Scholar
  120. Kanematsu S, Adachi Y, Ito T (2007) Mating-type loci of heterothallic Diaporthe spp.: homologous genes are present in opposite mating-types. Curr Genet 52:11–22PubMedCrossRefGoogle Scholar
  121. Kano S, Kurita T, Kanematsu S, Morinaga T (2011) Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus Rosellinia necatrix. Microbiology 80:82–88. doi: 10.1134/S0026261711010103 CrossRefGoogle Scholar
  122. Kathiravan G, Raman VS (2010) In vitro taxol production, by Pestalotiopsis breviseta—a first report. Fitoterapia 81:557–564. doi: 10.1016/j.fitote.2010.01.021 PubMedCrossRefGoogle Scholar
  123. Kobayashi T (2007) Index of fungi inhabiting woody plants in Japan. Host, Distribution and Literature. Zenkoku-Noson-Kyoiku Kyokai Publishing Co. Ltd.Google Scholar
  124. Kodsueb R, McKenzie EHC, Lumyong S, Hyde KD (2008a) Diversity of saprobic fungi on Magnoliaceae. Fungal Divers 30:37–53Google Scholar
  125. Kodsueb R, McKenzie EHC, Lumyong S, Hyde KD (2008b) Fungal succession on woody litter of Magnolia liliiflora (Magnoliaceae). Fungal Divers 30:55–72Google Scholar
  126. Kronstad JW, Staben C (1997) Mating type of filamentous fungi. Annu Rev Genet 31:245–276. doi: 10.1146/annurev.genet.31.1.245 PubMedCrossRefGoogle Scholar
  127. Kuhn JG (1913) Phomopsis leptostromiformis Bubák, in Lind, Danish Fungi (Copenhagen)Google Scholar
  128. Kulik MM (1984) Failure of Phomopsis phaseoli to produce mature pycnidia in senescent soybean stems at the end of the growing season. Mycologia 76:863–867CrossRefGoogle Scholar
  129. Kulik MM, Sinclair JB (1999) Phomopsis seed decay. In: Hartman GL, Sinclair JB, Rupe JC (eds) Compendium of soybean diseases. APS symp ser, pp 31–32Google Scholar
  130. Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91Google Scholar
  131. Kuo KC, Leu LS (1998) Phomopsis vitimegaspora: a new pathogenic Phomopsis from vines. Mycotaxon 66:497–499Google Scholar
  132. Lenne JM (1990) World list of fungal diseases of tropical pasture species. Phytopathol Pap 31:1–162Google Scholar
  133. Leth V, Netland J, Andreasen C (2008) Phomopsis cirsii: a potential biocontrol agent of Cirsium arvense. Weed Res (Oxford) 48:533–541. doi: 10.1111/j.1365-3180.2008.00666.x CrossRefGoogle Scholar
  134. Li S, Hartman GL, Boykin DL (2010a) Aggressiveness of Phomopsis longicolla and other Phomopsis spp. on soybean. Plant Dis 94:1035–1040CrossRefGoogle Scholar
  135. Li YY, Wang MZ, Huang YJ, Shen YM (2010b) Secondary metabolites from Phomopsis sp. A123. Mycology 1:254–261CrossRefGoogle Scholar
  136. Linders EGA, Enrico GA, Van Der Aa HA (1995) Taxonomy, sexuality and mating types of Diaporthe adunca. Mycol Res 99:1409–1416. doi: 10.1016/S0953-7562(09)80786-7 CrossRefGoogle Scholar
  137. Liu L (2011) Bioactive metabolites from the plant endophyte Pestalotiopsis fici. Mycology 2:37–45. doi: 10.1080/21501203.2011.562248 CrossRefGoogle Scholar
  138. Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microb 67:1–6. doi: 10.1128/AEM.67.5.1987-1994.2001 CrossRefGoogle Scholar
  139. Lu B, Hyde KD, Ho WH, Tsui KM, Taylor JE, Wong KM, Yanna Y, Zhou D (2000) Checklist of Hong Kong fungi. Fungal Diversity, Hong KongGoogle Scholar
  140. Luo LJ, Xi PG, Jiang Z, Qi PK (2004) Sporulation conditions of Phomopsis in pure culture. Mycosystema 23:219–225Google Scholar
  141. Lutchmeah RS (1992) A new disease of passion fruit in Mauritius: postharvest stem-end rot caused by Phomopsis tersa. Plant Pathol 41:772–773CrossRefGoogle Scholar
  142. Machowicz-Stefaniak Z (2009) the occurrence of biotic activity of Phomopsis diachenii Sacc. Acta Agro Bot 62:125–135Google Scholar
  143. Maffel HM, Morton HL (1983) Phomopsis canker of Russian-olive in southeastern Michigan. Plant Dis 67:964–965CrossRefGoogle Scholar
  144. McKeen CD (1957) Phomopsis black rot of Cucurbits. Can J Bot 35:43–50CrossRefGoogle Scholar
  145. McKenzie EHC (1992) Fungi of the Kermadec Islands. Mycotaxon 45:149–170Google Scholar
  146. McNeill J, Turland N (2005) Synopsis of proposals on botanical nomenclature—Vienna A review of the proposals concerning the International Code of Botanical Nomenclature submitted to the XVII International Botanical Congress. Turland Taxon 54:215–250CrossRefGoogle Scholar
  147. Meenavalli B, Rajulu G, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, Gueddari NEE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53. doi: 10.1007/s13225-010-0071-z CrossRefGoogle Scholar
  148. Mel’nik VA, Shabunin DA, Popov ES (2008) Contributions to the studies of mycobiota in Novgorod and Pskov regions. II. Coelomycetes. Mikol Fitopatol 42:43–52Google Scholar
  149. Melanson DL, Rawnsley B, Scheper RWA (2002) Molecular detection of Phomopsis taxa 1 and 2 in grapevine cane and buds. Australas Plant Pathol 31:67–73CrossRefGoogle Scholar
  150. Melnik VA, Pystina KA (1995) Novitates de micromycetibus reservati svirensis inferioris. Novosti Sist Nizsh Rast 30:29–36Google Scholar
  151. Mendes MAS, da Silva VL, Dianese JC (1998) Fungos em Plants no Brasil. Embrapa-SPI/Embrapa-Cenargen, BrasiliaGoogle Scholar
  152. Mengistu A, Castlebury LA, Smith JR, Rossman AY, Reddy KN (2007) Isolates of Diaporthe-Phomopsis from weeds and their effect on soybean. Can J Plant Pathol 29:283–289CrossRefGoogle Scholar
  153. Merrin SJ, Nair NG, Tarran J (1995) Variation in Phomopsis recorded on grapevine in Australia and its taxonomic and biological implications. Australas Plant Pathol 24:44–56CrossRefGoogle Scholar
  154. Meyer MD, Zhang GR, Pedersen DK, Bradley CA (2009) First report of Phomopsis stem canker of sunflower in Illinois caused by Phomopsis helianthi. Plant Dis 93:760–761CrossRefGoogle Scholar
  155. Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270. doi: 10.1099/mic.0.032540-0 PubMedCrossRefGoogle Scholar
  156. Moleleki N, Preisig O, Wingfield MJ, Crous PW, Wingfield BD (2002) PCR-RFLP and sequence data delineate three Diaporthe species associated with stone and pome fruit trees in South Africa. Eur J Plant Pathol 108:909–912CrossRefGoogle Scholar
  157. Moncalvo JM (2005) Molecular systematics: major fungal phylogenic groups and fungal species concepts. In: Xu JP (ed) Evolutionary genetics of fungi. Horizon Scientific, Norfolk, pp 1–33Google Scholar
  158. Mondal SN, Vicent A, Reis RF, Timmer LW (2007) Saprophytic colonization of citrus twigs by Diaporthe citri and factors affecting pycnidia production and conidial survival. Plant Dis 91:387–392CrossRefGoogle Scholar
  159. Morgan-Jones G (1989). The Diaporthe/Phomopsis complex: taxonomical considerations 1699–1706. In: Pascale AJ (ed) Proc World soybean Res. Conf. 4th. Realizacion, Orientacion, Grafica Editora, S.rl.L., Brunes AiresGoogle Scholar
  160. Moricca S (2002) Phomopsis alnea, the cause of dieback of black alder in Italy. Plant Pathol 51:755–764CrossRefGoogle Scholar
  161. Morin L, Watson AK, Reeleder RD (1989) Efficacy of Phomopsis convolvulus for control of field bindweed (Convolvulus arvensis). Weed Sci 37:830–835Google Scholar
  162. Morris MJ (1984) Additional diseases of Emex-Australis in South Africa. Phytophylactica 16:171–176Google Scholar
  163. Mortensen K (1997) Biological control of weeds using microorganisms. In: Boland GJ, Kuykendall LD (eds) Plant–microbe interactions and biological control. Marcel Dekker, New York, pp 223–248Google Scholar
  164. Mostert L, Crous PW, Petrini O (2000) Endophytic fungi associated with shoots and leaves of Vitis vinifera, with specific reference to the Phomopsis viticola complex. Sydowia 52:46–58Google Scholar
  165. Mostert L, Crous PW, Kang JC, Phillips AJL (2001a) Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 93:146–167CrossRefGoogle Scholar
  166. Mostert L, Kang JC, Crous PW, Denman S (2001b) Phomopsis saccharata sp. nov., causing a canker and die-back disease of Protea repens in South Africa. Sydowia 53:227–235Google Scholar
  167. Munk A (1957) Danish pyrenomycetes. A preliminary flora. Dansk Bot Ark 17:1–491Google Scholar
  168. Muntanola-Cvetković M, Mihaljčević M, Petrov M (1981) On the identity of the causative agent of a serious Phomopsis-Diaporthe disease in sunflower plants. Nova Hedwigia 34:417–435Google Scholar
  169. Muntanola-Cvetković M, Bojović-Cvetić D, Franić-Mihajlović D, Vukojević J (1990) Hyphal interference and antagonism among Diaporthe or Phomopsis species and sensitivity toward antifungal metabolites. In: IV International Mycological Congress. Regensburg, Germany. Abstracts, IB-86Google Scholar
  170. Muntañola-Cvetkovic M, Vukojevic J, Mihaljcevic M (2000) Differential growth inhibition of Diaporthe and Phomopsis isolates by the metabolic activity of five actinomycetes. J Phytopathol 148:289–295. doi: 10.1046/j.1439-0434.2000.00496.x CrossRefGoogle Scholar
  171. Muntañola-Cvetković M, Mitić N, Vukojević J (1992) Verification of the inhibitory effects provoked by several Actinomycetes on the growth of the fungus Phomopsis helianthi and congeneric species. In: Proc. 13th Int. Sunflower Conf, Pisa. 1:785–790Google Scholar
  172. Muntañola-Cvetković M, Vukojević J, Mihaljcêević M (1996) Cultural growth patterns and incompatibility reactions in Diaporthe and Phomopsis populations. J Phytopathol 144:285–295CrossRefGoogle Scholar
  173. Murali TS, Suryanarayanan TS, Geeta R (2006) Endophytic Phomopsis species: host range and implications for diversity estimates. Can J Microbiol 52:673–680PubMedCrossRefGoogle Scholar
  174. Nagendra Prasad MN, Bhat SS, Charith Raj AP, Janardhana GR (2006) Molecular detection of Phomopsis azadirachtae, the causative agent of dieback disease of neem by polymerase chain reaction. Curr Sci 91:158–159Google Scholar
  175. Nagendra Prasad MN, Bhat SS, Sreenivasa MY (2010) Antifungal activity of essential oils against Phomopsis azadirachtae—the causative agent of die-back disease of neem. J Agri Tech 6:127–133Google Scholar
  176. Nagendra Prasad MN, Bhat SS, Dharwar VN, Mehta BS, Chauhan A (2011) In vitro efficacy of plant essential oils against Phomopsis azadirachtae—the causative agent of die-back disease of neem. Arch Phytopathol Plant Protect 44:412–418. doi: 10.1080/03235400903092941 CrossRefGoogle Scholar
  177. Nelson S (2008) Citrus melanose. Plant disease PD-59: college of tropical agriculture and human resources: Manoa
  178. Nevena M, Jelena V, Franic-Mihajlovic D (1997) A comparative study of Diaporthe/Phomopsis fungi on soybean from two different regions of the world. Mycopathologia 139:107–113PubMedCrossRefGoogle Scholar
  179. Nikandrow A, Weidemann GJ, Auld BA (1990) Incidence and pathogenicity of Colletotrichum orbiculare and a Phomopsis sp. on Xanthium spp. Plant Dis 74:796–799CrossRefGoogle Scholar
  180. Nithya K, Muthumary J (2011) Bioactive metabolite produced by Phomopsis sp. an endophytic fungus in Allamanda cathartica Linn. Recent Res Sci Tech 3:44–48Google Scholar
  181. Oak SW, Dorset RD (1983) Phomopsis canker of European black alder found in Kentucky seed-production areas. Plant Dis 67:691–693CrossRefGoogle Scholar
  182. Ohsawa T, Kobayashi T (1989) Concave rot of melon fruit caused by two Phomopsis fungi. Ann Phytopathol Soc Jpn 55:410–419CrossRefGoogle Scholar
  183. Onesirosan PT (1978) Factors affecting sporulation by Phomopsis phaeolorum. Mycopathologia 64:23–27. doi: 10.1007/BF00443084 CrossRefGoogle Scholar
  184. Ormeno-Nunez J, Reeleder RD, Watson AK (1988) A foliar disease of field bindweed (Convolvulusa rvensis L.) caused by Phomopsis convolvulus. Plant Dis 72:338–342CrossRefGoogle Scholar
  185. Ortiz-Ribbing L, Williams MM (2006) Conidial germination and germ tube elongation of Phomopsis amaranthicola and Microsphaeropsis amaranthi on leaf surfaces of seven Amaranthus species: implications for biological control. Biol Control 38:356–362CrossRefGoogle Scholar
  186. Osmonalieva A, McNeil DL, Stewart A, Klinac DJ, Wadia KDR (2001) Phomopsis castanea infection of chestnut in New Zealand. Proceedings of the 10th Australian Agronomy Conference, January 2001, Hobart, TasmaniaGoogle Scholar
  187. Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in cool temperate deciduous forest in Japan. Mycologia 94:421–427PubMedCrossRefGoogle Scholar
  188. Ostazeski SA, Wells HD (1960) A Phomopsis stem blight of yellow lupine (Lupinus luteus L.). Plant Dis Report 44:66–67Google Scholar
  189. Ou SH (1985) Rice diseases. 2nd edn. Commonwealth Mycological Institute.Google Scholar
  190. Ozerskaya SM, Vasilenko AN, Verslyppe B, Dawyndt P (2010) FungalDC: a database on fungal diversity in culture collections of the world. Inoculum Supp Mycologia 61:1–4Google Scholar
  191. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  192. Payne AL (1983) Biosynthesis of radiolabeled phomopsin by Phomopsis leptostromiformis. Appl Environ Microb 45:389–392Google Scholar
  193. Pearce C (1997) Biologically active fungal metabolites. Adv Appl Microbiol 44:1–80. doi: 10.1016/S0065-2164(08)70459-3 PubMedCrossRefGoogle Scholar
  194. Pecchia S, Mercatelli E, Vannacci G (2004) Intraspecific diversity within Diaporthe helianthi: evidence from rDNA intergenic spacer (IGS) sequence analysis. Mycopathologia 157:317–326. doi: 10.1023/B:MYCO.0000024185.66158.7e PubMedCrossRefGoogle Scholar
  195. Pennycook SR (1989) Plant diseases recorded in New Zealand. Plant Dis Div, D.S.I.R., AucklandGoogle Scholar
  196. Pereira JM, Barreto RW (2001) Additions to the mycobiota of the weed Lantana camara (Verbenaceae) in southeastern Brazil. Mycopathologia 151:71–80. doi: 10.1023/A:1010929611439 PubMedCrossRefGoogle Scholar
  197. Phillips AJL (1999) The relationship between Diaporthe perjuncta and Phomopsis viticola on grapevines. Mycologia 91:1001–1007CrossRefGoogle Scholar
  198. Phillips AJL (2000) Excoriose, cane blight and related disease of grapevines: a taxonomic review of the pathogens. Phytopathol Medit 39:341–356Google Scholar
  199. Phoulivong S, Cai L, Chen H, McKenzie EHC, Abdelsalam K et al (2010) Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers 44:33–43. doi: 10.1007/s13225-010-0046-0 CrossRefGoogle Scholar
  200. Prachya S, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P (2007) Cytotoxic mycoepoxydiene derivatives from an endophytic fungus Phomopsis sp. isolated from Hydnocarpus anthelminthicus. Planta Med 73:1418–1420PubMedCrossRefGoogle Scholar
  201. Preisig O, Moleleki N, Smit WA, Wingfield BD, Wingfield MJ (2000) A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J Gen Virol 81:3107–3114PubMedGoogle Scholar
  202. Prihastuti H, Cai L, Chen H, McKenzie EHC, Hyde KD (2009) Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers 39:89–109Google Scholar
  203. Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD (2005) Ribosomal DNA fingerprinting in the identification of non sporulating endophytes from Magnolia liliiflora (Magnoliaceae). Fungal Divers 20:167–186Google Scholar
  204. Promputtha I, Lumyong S, Vijaykrishna D, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590PubMedCrossRefGoogle Scholar
  205. Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99. doi: 10.1007/s13225-010-0024-6 CrossRefGoogle Scholar
  206. Punithalingam E (1974) Studies on Sphaeropsidales in culture. II. Mycol Pap 136:1–63Google Scholar
  207. Punithalingam E (1975) Some new species and combinations in Phomopsis. Trans Brit Mycol Soc 64:427–435CrossRefGoogle Scholar
  208. Punithalingam E (1981) Dieback and leathery fruit rot of Capsicum. Mycol Pap 149:2–3Google Scholar
  209. Punithalingam E (1985) Phomopsis anacardii. CMI Descr Pathog Fungi Bact 826:1–2Google Scholar
  210. Punithalingam E (1993) Phomopsis mangiferae CMI Descr Fungi Bact 1168. Mycopathologia 123:59–60CrossRefGoogle Scholar
  211. Punithalingam E, Gibson IAS (1972) Phomopsis theae. CMI Descr Pathog Fungi Bac 330Google Scholar
  212. Punithalingam E, Gibson IAS (1975) Diaporthe woodii. CMI Descr Pathog Fungi Bact 476:1–2Google Scholar
  213. Punithalingam E, Holliday P (1973) Diaporthe citri. CMI Descr Pathog Fungi Bact 396:1–2Google Scholar
  214. Punithalingam E, Holliday P (1975) Phomopsis cucurbitae. CMI Descr Pathog Fungi Bact 469:1–2Google Scholar
  215. Raabe RD, Conners IL, Martinez AP (1981) Checklist of plant diseases in HawaiiGoogle Scholar
  216. Rawnsley B (2002) Phomopsis type 1 on grapevine: pathogenicity and management. PhD thesis. The University of Adelaide, South AustraliaGoogle Scholar
  217. Rawnsley B, Wicks TJ, Scott ES, Stummer BE (2004) Diaporthe perjuncta does not cause Phomopsis cane and leaf spot disease of grapevine in Australia. Plant Dis 88:1005–1010CrossRefGoogle Scholar
  218. Reclame P (2010) Limseed reports Asparagus breeding newsletter: Phomopsis asparagi
  219. Redkoa F, Clavina ML, Weber D, Raneac F, Ankeb T, Martinoa V (2007) Antimicrobial isoflavonoids from Erythrina crista galli infected with Phomopsis sp. Z Naturforsch 62c:164–168Google Scholar
  220. Rehner SA, Uecker FA (1994) Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Can J Bot 72:1666–1674CrossRefGoogle Scholar
  221. Reifschneider FJB, Lopes CA (1982) Phoma asparagi on asparagus. FAO Plant Protect Bull 30:157Google Scholar
  222. Rekab D, Sorbo D, Reggio G, Zoina A, Firrao G (2004) Polymorphisms in nuclear rDNA and mtDNA reveal the polyphyletic nature of isolates of Phomopsis pathogenic to sunflower and a tight monophyletic clade of defined geographic origin. Mycol Res 108:393–402PubMedCrossRefGoogle Scholar
  223. Rhouma A, Triki MA, Ouerteni K, Mezghanni M (2008) Chemical and biological control of Phomopsis amygdali the causal agent of constriction canker of almond in Tunisia. Tunis J Plant Protect 3:69–77Google Scholar
  224. Riccioni C, Belfiori B, Rubini A, Passeri V, Arcioni S, Paolocci F (2008) Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180:466–478. doi: 10.1111/j.1469-8137.2008.02560.x PubMedCrossRefGoogle Scholar
  225. Riedl H, Wechtl E (1981) Proposal to conserve the name Phomopsis (Sacc.) Bubak (1905) against Myxolibertella Hohnel (1903). Taxon 30:826–828Google Scholar
  226. Rocha ACS, Garcia D, Uetanabaro APT, Carneiro RTO, Araújo IS, Mattos CRR, Góes-Neto A (2011) Foliar endophytic fungi from Hevea brasiliensis and their antagonism on Microcyclus ulei. Fungal Divers 47:75–84. doi: 10.1007/s13225-010-0044-2 CrossRefGoogle Scholar
  227. Rodeva R, Gabler J (2004) First report of Phomopsis diachenii in Bulgaria. Mycol Balc 1:153–157Google Scholar
  228. Rodeva R, Stoyanova Z, Pandeva R (2009) A new fruit disease of pepper in Bulgaria caused by Phomopsis capsici. Acta Hortic 830:551–556Google Scholar
  229. Rokas A, Williams BL, King N, Carroll SB (2003a) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804PubMedCrossRefGoogle Scholar
  230. Rokas A, King N, Finnerty JR, Carroll SB (2003b) Conflicting phylogenetic signals at the base of the metazoan tree. Dev Evol 5:346–359CrossRefGoogle Scholar
  231. Rosskopf EN, Charudattan R, Shabana YM, Benny GL (2000a) Phomopsis amaranthicola, a new species from Amaranthus sp. Mycologia 92:114–122CrossRefGoogle Scholar
  232. Rosskopf EN, Charudattan R, DeValerio JT, Stall WM (2000b) Field evaluation of Phomopsis amaranthicola, a biological control agent of Amaranthus spp. Plant Dis 84:1225–1230CrossRefGoogle Scholar
  233. Rossman AY, Palm-Hernández ME (2008) Systematics of plant pathogenic fungi: why it matters. Plant Dis 92:1376–1386CrossRefGoogle Scholar
  234. Rossman AY, Farr DF, Castlebury LA (2007) A review of the phylogeny and biology of the Diaporthales. Mycoscience 48:135–144. doi: 10.1007/s10267-007-0347-7 CrossRefGoogle Scholar
  235. Saccardo PA (1883) Sylloge Fungorum, II. Padua.Google Scholar
  236. Saccardo PA (1884) Sylloge Fungorum 4:1–818Google Scholar
  237. Saccardo PA (1905) Notae mycologicae. Series V. Ann Mycol 3:165–171Google Scholar
  238. Saccardo PA (1915) Fungi noveboracenses. Ann Mycol 13:115–138Google Scholar
  239. Saccardo PA, Saccardo D (1906) Sylloge Fungorum 18:1–838Google Scholar
  240. Sampson PJ, Walker J (1982) An annotated list of plant diseases in Tasmania. Department of Agriculture TasmaniaGoogle Scholar
  241. Sanogo S, Etarock BF (2009) First report of Phomopsis longicolla causing stem blight of valencia peanut in New Mexico. Plant Dis 93:965CrossRefGoogle Scholar
  242. Santos JM, Phillips AJL (2009) Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers 34:111–125Google Scholar
  243. Santos JM, Correia VG, Phillips AJL (2010) Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol 114:255–270PubMedCrossRefGoogle Scholar
  244. Sateesh MK, Bhat SS, Devaki NS (1997) Phomopsis azadirachtae sp. nov. from India. Mycotaxon 65:517–520Google Scholar
  245. Sawada K (1959) Descriptive catalogue of Taiwan (Formosan) fungi. XI. Spec Publ Coll Agric Natl Taiwan Univ 8:1–268Google Scholar
  246. Says-Lesage V, Roeckel-Drevet P, Viguie A, Tourvieille J, Nicolas P, de Tourvieille LD (2002) Molecular variability within Diaporthe/Phomopsis helianthi from France. Phytopathology 92:308–313PubMedCrossRefGoogle Scholar
  247. Scheper RWA, Crane DC, Whisson DL, Scott ES (2000) The Diaporthe teleomorph of Phomopsis Taxon 1 on grapevine. Mycol Res 104:226–231CrossRefGoogle Scholar
  248. Schilder AMC, Erincik O, Castlebury L, Rossman A, Ellis MA (2005) Characterization of Phomopsis spp. infecting grapevines in the Great Lakes region of North America. Plant Dis 89:755–762CrossRefGoogle Scholar
  249. Schmitt I, Crespo A, Divakar PK, Fankhauser JD, Herman-Sackett E, Kalb K, Nelsen MP, Nelson NA, Rivas-Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23:35–40. doi: 10.3767/003158509X470602 PubMedCrossRefGoogle Scholar
  250. Schroers HJ, Gräfenhan T, Nirenberg HI, Seifert KA (2011) A revision of Cyanonectria and Geejayessia gen. nov., and related species with Fusarium-like anamorphs. Stud Mycol 68:115–138. doi: 10.3114/sim.2011.68.05 PubMedCrossRefGoogle Scholar
  251. Seifert KA, Rossman AY (2010) How to describe a new fungal species. IMA Fungus 1:109–116CrossRefGoogle Scholar
  252. Senthil Kumaran R, Hur B (2009) Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Bioc 54:21–30. doi: 10.1042/BA20080110 CrossRefGoogle Scholar
  253. Senthil Kumaran R, Jung H, Kim HJ (2011) In vitro screening of taxol, an anticancer drug produced by the fungus, Colletotrichum capsici. Eng Life Sci 11:1–8. doi: 10.1002/elsc.201000119 CrossRefGoogle Scholar
  254. Shaw CG (1973) Host fungus index for the Pacific Northwest—I. Hosts. Wash State Univ Agric Exp Sta Bull 765:1–121Google Scholar
  255. Shaw DE (1984) Microorganisms in Papua New Guinea. Dept Primary Ind Res Bull 33:1–344Google Scholar
  256. Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54Google Scholar
  257. Shenoy BD, Jeewon R, Wang HK, Amandeep K, Ho WH, Bhat DJ, Crous PW, Hyde KD (2010) Sequence data reveals phylogenetic affinities of fungal anamorphs Bahusutrabeeja, Diplococcium, Natarajania, Paliphora, Polyschema, Rattania and Spadicoides. Fungal Divers 44:161–169CrossRefGoogle Scholar
  258. Sherf AF, Macnab AA (1986) Vegetable diseases and their control, 2nd edn. Wiley, New YorkGoogle Scholar
  259. Shino Y, Nitto A, Shimanuki K, Koseki T, Murayama T, Miyakawa T, Yoshida J, Kimura KI (2009) A new benzoxepin metabolite isolated from endophytic fungus Phomopsis sp. J Antibiot 62:533–535CrossRefGoogle Scholar
  260. Shivas RG (1992) Phomopsis emicis sp. nov. on Emex australis in South Africa and Western Australia. Mycol Res 96:75–77CrossRefGoogle Scholar
  261. Shivas RG, Scott JK (1993) Effect of the stem blight pathogen, Phomopsis emicis, and the weevil, Perapion antiquum, on the weed Emex australis. Ann App Biol 122:617–622CrossRefGoogle Scholar
  262. Shivas RG, Allen JG, Williamson PM (1991) Infraspecific variation demonstrated in Phomopsis leptostromiformis using cultural and biochemical techniques. Mycol Res 95:320–323CrossRefGoogle Scholar
  263. Silva GH, Teles HL, Trevisan HC, Bolzani VS, Young MCM et al (2005) New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J Braz Chem Soc 16:6b. doi: 10.1590/S0103-50532005000800029 Google Scholar
  264. Simmonds JH (1966) Host index of plant diseases in Queensland. Queensland Department of Primary Industries, BrisbaneGoogle Scholar
  265. Smith H, Ogilvy D (2008) Nut rot in chestnuts. Aust Nutgrow 22:10–15Google Scholar
  266. Smith SA, Tank DC, Boulanger L-A, Bascom-Slack CA, Eisenman K et al (2008) Bioactive endophytes warrants intensified exploration and conservation. PLoS ONE 3:30–52. doi: 10.1371/journal.pone.0003052 Google Scholar
  267. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol R 67:491–502. doi: 10.1128/MMBR.67.4.491-502.2003 CrossRefGoogle Scholar
  268. Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95. doi: 10.1007/s13225-010-0086-5 CrossRefGoogle Scholar
  269. Suryanarayanan TS, Murali TS, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80:818–826CrossRefGoogle Scholar
  270. Sutton BC (1980) The coelomycetes. Fungi imperfecti with Pycnidia, Acervuli and Stromata. Commonwealth Mycological Institute, Kew, Surrey, EnglandGoogle Scholar
  271. Sutton DA, Fothergill AW, Rinaldi MG (1997) Guide to clinically significant fungi. 491ppGoogle Scholar
  272. Sutton DA, Timm WD, Morgan-Jones G, Rinaldi MG (1999) Human phaeohyphomycotic osteomyelitis caused by the coelomycete Phomopsis Saccardo 1905: criteria for identification, case history, and therapy. J Clin Microbiol 37:807–811PubMedGoogle Scholar
  273. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer, SunderlandGoogle Scholar
  274. Tai FL (1979) Sylloge Fungorum Sinicorum. Sci Press Acad Sin PekingGoogle Scholar
  275. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459. doi: 10.1039/B100918O PubMedCrossRefGoogle Scholar
  276. Thaung MM (2008) Biodiversity survey of coelomycetes in Burma. Australas Mycol 27:74–110Google Scholar
  277. Thomidis T, Mchailidou O, Tsipouridis C, Michailides Z (2009) Management of latent infections in peaches caused by fungi of genus Monilinia. Phytopathol Mediterr 48:315Google Scholar
  278. Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204Google Scholar
  279. Trujillo EE (2005) History and success of plant pathogens for biological control of introduced weeds in Hawaii. Biol Control 33:113–122. doi: 10.1016/j.biocontrol.2004.11.008 CrossRefGoogle Scholar
  280. Tucker CM (1935) Diaporthe Phaseolorum on pepper fruits. Mycologia 27:580–585CrossRefGoogle Scholar
  281. Tuset JJ, Portilla MAT (1989) Taxonomic status of Fusicoccum amygdali and Phomopsis amygdalina. Can J Bot 67:1275–1280. doi: 10.1139/b89 CrossRefGoogle Scholar
  282. Ubriszy G, Vörös J (1966) Phytopathogenic and saprobic fungi from Hungary. I Acta Phytopathol Acad Sci Hung 1:145–163Google Scholar
  283. Udayanga D, Liu XZ, Cai L, Hyde KD (2011) unpublished dataGoogle Scholar
  284. Uddin W, Stevenson KL (1997) Pathogenicity of a species of Phomopsis causing a shoot blight on peach in Georgia and evaluation of possible infection courts. Plant Dis 81:983–989. doi: 10.1094/PDIS.1997.81.9.983 CrossRefGoogle Scholar
  285. Uddin W, Stevenson KL (1998a) Seasonal development of Phomopsis shoot blight of peach and effects of selective pruning and shoot debris management on disease incidence. Plant Dis 82:565–568CrossRefGoogle Scholar
  286. Uddin W, Stevenson KL (1998b) Pathogenic and molecular characterization of three Phomopsis isolates from peach, plum and Asian pear. Plant Dis 82:732–737CrossRefGoogle Scholar
  287. Uecker FA (1988) A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycol Mem 13:1–231Google Scholar
  288. Uecker FA, Johnson DA (1991) Morphology and taxonomy of species of Phomopsis on asparagus. Mycologia 83:192–199CrossRefGoogle Scholar
  289. Uecker FA, Kuo KC (1992) A new Phomopsis with long paraphyses. Mycotaxon 44:425–433Google Scholar
  290. Umechuruba CI, Biol C (1997) An annotated list of plant diseases in Nigeria. Pen paper publications. OwerriGoogle Scholar
  291. Van der Aa HA, Noordeloos ME, de Gruyter J (1990) Species concepts in some larger genera of the Coelomycetes. Stud Mycol 32:3–19Google Scholar
  292. van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253. doi: 10.1016/j.tplants.2006.03.005 PubMedCrossRefGoogle Scholar
  293. Van Kesteren (1967) Phomopsis sclerotioides. Nethl j Pl path 73:112–116Google Scholar
  294. Van Niekerk JM, Groenewald JZ, Farr DF, Fourie PH, Halleen F, Crous PW (2005) Reassessment of Phomopsis species on grapevines. Australas Plant Pathol 34:27–39CrossRefGoogle Scholar
  295. van Rensburg JCJ, Lamprecht SC, Groenewald JZ, Castlebury LA, Crous PW (2006) Characterization of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Stud Mycol 55:65–74. doi: 10.3114/sim.55.1.65 PubMedCrossRefGoogle Scholar
  296. Van Warmelo KT, Marasas WFO (1972) Phomopsis leptostromiformis: the causal fungus of lupinosis, a mycotoxicosis, in sheep. Mycologia 64:316–324PubMedCrossRefGoogle Scholar
  297. Van Warmelo KT, Marasas WFO, Adelaar TF, Kellerman TS, van Rensburg IBJ, Minne JA (1970) Experimental evidence that lupinosis of sheep is a mycotoxicosis caused by the fungus Phomopsis leptostromiformis (Kuhn) Bubak. J S Afr Vet Med Assoc 41:235–247Google Scholar
  298. Vergara M, Cristani C, Regis C, Vannacci G (2004) A coding region in Diaporthe helianthi reveals genetic variability among isolates of different geographic origin. Mycopathologia 158:123–130PubMedCrossRefGoogle Scholar
  299. Vergara M, Capasso T, Gobbi E, Vannacci G (2005) Plasmid distribution in European Diaporthe helianthi isolates. Mycopathologia 159:591–599. doi: 10.1007/s11046-005-1327-0 PubMedCrossRefGoogle Scholar
  300. Vesterlund SR, Helander M, Faeth SH, Hyvönen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers 47:109–118. doi: 10.1007/s13225-011-0089-x CrossRefGoogle Scholar
  301. Vidić M (1991) Variability of Diaporthe phaseolorum var. caulivora on soybean in the Vojvodina province in Serbia. Zaštita bilja 197:183–189Google Scholar
  302. Viguié A, Vear F, de Labrouhe DT (1999) Interactions between French isolates of Phomopsis/Diaporthe Helianthi Munt.-Cvet. et al. and sunflower (Helianthus annuus L.) genotypes. Eur J Plant Pathol 105:693–702. doi: 10.1023/A:1008715816205 CrossRefGoogle Scholar
  303. Vrandecic K, Cosic J, Riccioni L, Duvnjak T, Jurkovic D (2004) Phomopsis longicolla—new pathogen on Abutilon theophrasti in Croatia. Pl Pathol 53:251CrossRefGoogle Scholar
  304. Vrandecic K, Cosic J, Jurkovic D, Riccioni L, Duvnjak T (2007) First Report of Phomopsis longicolla on cocklebur (Xanthium strumarium) in Croatia. Plant Dis 91:1687CrossRefGoogle Scholar
  305. Wagenaar MM, Clardy J (2001) Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J Nat Prod 64:1006–1009PubMedCrossRefGoogle Scholar
  306. Ward E, Foster SJ, Fraaije BA, McCartney (2004) Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16CrossRefGoogle Scholar
  307. Washington WS, Allen AD, Dooley LB (1997) Preliminary studies on Phomopsis castanea and other organisms associated with healthy and rotted chestnut fruit in storage. Australas Plant Pathol 26:37–43CrossRefGoogle Scholar
  308. Washington B, Wade S, Knoxfield (2006) Phomopsis nut rot of chestnuts. Agriculture notes. Departmemt of Primary Industries, State of Victoria
  309. Webber J, Gibbs JN (1984) Colonization of elm bark by Phomopsis oblonga. Trans Br Mycol Soc 82:348–352CrossRefGoogle Scholar
  310. Weber D (2009) Endophytic fungi, occurrence and metabolites. Physiology and Genetics The Mycota 15:153–195. doi: 10.1007/978-3-642-00286-1_8
  311. Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2005) Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. ChemInform 36:25–32. doi: 10.1002/chin.200511230 Google Scholar
  312. Wehmeyer LE (1933) The genus Diaporthe Nitschke and its segregates. Univ Michigan Stud, Sci Ser 9:1–349Google Scholar
  313. Wheeler MM, Wheeler DMS, Peterson GW (1975) Anthraquinone pigments from the phytopathogen Phomopsis juniperovora Hahn. Phytochemistry 14:288–289CrossRefGoogle Scholar
  314. Whiteside JO (1993) Melanose. In: Whiteside JO, Garnsey SM, Timmer LW (eds) Compendium of citrus diseases. APS, The American Phytopathological Society, Minneapolis, pp 20–21Google Scholar
  315. Williams TH, Liu PSW (1976) A host list of plant diseases in Sabah, Malaysia. Phytopathol Pap 19:1–67Google Scholar
  316. Williamson PM, Highet AS, Gams W, Sivasithamparam K, Cowling WA (1994) Diaporthe toxica sp. nov., the cause of lupinosis in sheep. Mycol Res 98:1364–1368CrossRefGoogle Scholar
  317. Wood P (1986) Epidemiology of Phomopsis leptostromiformis. In: Proceedings of the Fourth International Lupin Conference, Geraldton, Australia, pp 220–229Google Scholar
  318. Wood PM, Sivasithamparam K (1989) Diaporthe woodii (anamorph Phomopsis leptostromiformis)—a toxigenic fungus infecting cultivated lupins. Mycopathologia 105:79–86CrossRefGoogle Scholar
  319. Wood PM, Brown AG, Petterson DS (1973) Production of the lupinosis mycotoxin by Phomopsis rossiana. Aust J Exp Biol Med Sci 51:557–558PubMedCrossRefGoogle Scholar
  320. Wu SH, Chen YW, Shao SC, Wang LD, Li ZY, Yang LY, Li SL, Huang R (2008) Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J Nat Prod 71:731–734. doi: 10.1021/np070624j PubMedCrossRefGoogle Scholar
  321. Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44:15–31. doi: 10.1007/s13225-010-0055-z CrossRefGoogle Scholar
  322. Yang J, Xu F, Huang C, Li J, She Z, Pei Z, Lin Y (2010) Metabolites from the mangrove endophytic fungus Phomopsis sp. (#zsu-H76). Eur J Org Chem 19:3692–3695. doi: 10.1002/ejoc.201000329 CrossRefGoogle Scholar
  323. Yanna Ho WH, Hyde KD (2002) Fungal succession on fronds of Phoenix hanceana in Hong Kong. Fungal Divers 10:185–211Google Scholar
  324. Yin L, Hlsayoshi K, Yoshiyuki T, Yuichi H, Shigeo I (1992) Interaction of Phomopsin a with porcine brain tubulin: inhibition of tubulin polymerization and binding at a rhizoxin binding site. Biochem Pharmacol 43:219–224. doi: 10.1016/0006-2952(92)90281-M CrossRefGoogle Scholar
  325. Yuan ZL, Dai CC, Li X, Tian LS, Wang XX (2007) Extensive host range of an endophytic fungus affects the growth and physiological functions in rice (Oryza sativa L.). Symbiosis 43:21–28Google Scholar
  326. Yuan G, Li Q, Wei J (2008) New species of Phomopsis on Zizyphus mauritians in Guangxi. Mycosystema 27:631–633Google Scholar
  327. Zhang AW, Hartman GL, Riccioni L, Chen WD, Ma RZ, Pedersen WL (1997) Using PCR to distinguish Diaporthe phaseolorum and Phomopsis longicolla from other soybean fungal pathogens and to detect them in soybean tissues. Plant Dis 81:1143–1149CrossRefGoogle Scholar
  328. Zhang AW, Riccioni L, Pedersen WL, Kollipara KP, Hartman GL (1998) Molecular identification and phylogenetic grouping of Diaporthe phaseolorum and Phomopsis longicolla isolates from soybean. Phytopathology 88:1306–1314PubMedCrossRefGoogle Scholar
  329. Zhang AW, Hartman GL, Curio-Penny B, Pedersen WL, Becker KB (1999) Molecular detection of Diaporthe phaseolorum and Phomopsis longicolla from soybean seeds. Phytopathology 89:796–804PubMedCrossRefGoogle Scholar
  330. Zhao P, Luo J, Zhuang WY (2011) Practice towards DNA barcoding of the nectriaceous fungi. Fungal Divers 46:183–191. doi: 10.1007/s13225-010-0064-y CrossRefGoogle Scholar
  331. Zhigiang A (2005) Handbook of industrial mycology. Marcel Dekker, New YorkGoogle Scholar
  332. Zhuang WY (2001) Higher fungi of tropical China. Mycotaxon, IthacaGoogle Scholar

Copyright information

© Kevin D. Hyde 2011

Authors and Affiliations

  • Dhanushka Udayanga
    • 2
    • 1
  • Xingzhong Liu
    • 1
  • Eric H. C. McKenzie
    • 3
  • Ekachai Chukeatirote
    • 2
  • Ali H. A. Bahkali
    • 4
  • Kevin D. Hyde
    • 2
    • 4
  1. 1.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.School of ScienceMae Fah Luang UniversityChiang RaiThailand
  3. 3.Landcare ResearchAucklandNew Zealand
  4. 4.College of Science, Botany and Microbiology DepartmentKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations