Fungal Diversity

, Volume 45, Issue 1, pp 99–130 | Cite as

Lactarius volemus sensu lato (Russulales) from northern Thailand: morphological and phylogenetic species concepts explored

  • Kobeke Van de PutteEmail author
  • Jorinde Nuytinck
  • Dirk Stubbe
  • Huyen Thanh Le
  • Annemieke Verbeken


Lactarius volemus (Fr.: Fr.) Fr. is a well known and morphologically easily recognizable milkcap of the Northern hemisphere, forming ectomycorrhiza with both deciduous and coniferous trees. It was originally described from Europe, but is also reported in other continents. Although it is characterized by several unique macro- and micromorphological features, substantial variation in colour, lamellae spacing and changing and staining of the latex has been recorded and it is therefore considered as a putatively unresolved species complex. This study explores the concordance between morphological and phylogenetic species concepts within L. volemus sensu lato of northern Thailand, combining a critical morphological scrutiny with a multiple gene genealogy based on LSU, ITS and rpb2 nuclear sequences. Twelve strongly supported monophyletic clades and six terminal branches are discernable in all phylogenetic trees and represent 18 phylogenetic species. Six of the monophyletic clades can be morphologically distinguished and are described as new species: L. acicularis, L. crocatus, L. distantifolius, L. longipilus, L. pinguis and L. vitellinus. Five other clades also show some morphological differences, but these are too subtle and do not allow for a clear-cut species delimitation without the corroboration of molecular data. Lactarius volemus sensu lato of northern Thailand is therefore still considered as a partially cryptic species complex. Pleurolamprocystidia, pileipellis hairs and to a lesser degree also pileus colour are important diagnostic characteristics. Spore morphology, latex discoloration and pileus surface texture are less useful as diagnostic features. Whether this rich diversity is the result of in situ Pleistocene survival or post-glacial expansion and subsequent radiation, has yet to be revealed.


Russulaceae Cryptic species Species complex Morphology Multiple gene phylogeny 



The first author is supported by the “Bijzonder Onderzoeksfonds Ghent University” (BOF). The NFS grant (DEB-0118776) of Prof. Dennis Desjardin made it possible for H.T. Le to conduct her research in Thailand. We would like to express our gratitude to all who provided collections for this research and helped during the fieldwork: Ruben Walleyn, Else Vellinga, Dennis Desjardin, Samantha Karunarathna, Phongeun Sysouphanthong, Jian Kui-Liu, Rui-Lin Zhao and Michael Pilkington. We wish to acknowledge Prof. Kevin Hyde and Mae Fah Luang University, and Dr. Saisamorn Lumyong of Chiang Mai University for providing a Material Transfer Agreement that allowed removal of fungal specimens from Thailand. We would like to thank Heroen Verbruggen for providing the script for calculating MrBayes burn-in values and convergence times and the comments on the MrBayes analyses. Andy Vierstraete is acknowledged for the comments on the DNA-extraction protocol. The National Botanical Garden of Belgium is thanked for the use of the scanning electron microscope and in particular Myriam de Haan for assisting in taking the photographs. Finally, we would like to thank the reviewers for their comments.


  1. Adhikari MK, Devkota S, Tiwari RD (2005) Ethnomycological knowledge on uses of Wild mushrooms in Western and Central Nepal. Our Nature 3:13–19Google Scholar
  2. Amato A, Montresor M (2008) Morphology, phylogeny, and sexual cycle of Pseudo-nitzschia mannii sp. nov (Bacillariophyceae): a pseudo-cryptic species within the P. pseudodelicatissima complex. Phycologia 47(5):487–497CrossRefGoogle Scholar
  3. Anshari G, Kershaw P, van der Kaars S (2001) A late Pleistocene and Holocene pollen and charcoal record from peat swamp forest, Lake Sentarum Wildlife Reserve, West Kalimantan, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol 171:213–228CrossRefGoogle Scholar
  4. Arora D (1986) Mushrooms demystified: a comprehensive guide to the fleshy fungi, 2nd edn. Ten Speed, BerkeleyGoogle Scholar
  5. Beiko RG, Keith JM, Harlow TJ, Ragan MA (2006) Searching for convergence in phylogenetic Markov chain Monte Carlo. Syst Biol 55(4):553–565CrossRefPubMedGoogle Scholar
  6. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155CrossRefPubMedGoogle Scholar
  7. Boa E (2004) Wild edible fungi. A global overview of their use and importance to people. Non-Wood forest products 17. Food and Agriculture Organization of the United Nations (FAO). RomeGoogle Scholar
  8. Bouchet P (1959) L’année mycologique 1958 en Charente Maritime. Bull Soc Mycol Fr 96(3):271–287Google Scholar
  9. Brasier CM (1997) Fungal species in practice: identifying species units in fungi. In: Claridge MF, Dahwah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman & Hall, London, pp 135–170Google Scholar
  10. Buyck B, Hofstetter V, Eberhardt U, Verbeken A, Kauff F (2008) Walking the thin line between Russula and Lactarius: the dilemma of Russula subsect. Ochricompactae. Fungal Divers 28:15–40Google Scholar
  11. Cannon CH, Manos PS (2003) Phylogeography of the Southeast Asian stone oaks (Lithocarpus). J Biogeogr 30:211–226CrossRefGoogle Scholar
  12. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552PubMedGoogle Scholar
  13. Christensen M, Bhattarai S, Devkota S, Larsen HO (2008) Collection and use of wild edible fungi in Nepal. Econ Bot 62(1):12–23CrossRefGoogle Scholar
  14. Colak A, Faiz O, Sesli E (2009) Nutritional composition of some wild edible mushrooms. Turk J Biochem 34(1):25–31CrossRefGoogle Scholar
  15. Dam RAC, Fluin J, Suparan P, van der Kaars S (2001) Paleaoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33.000 yr B.P. Palaeogeogr Palaeoclimatol Palaeoecol 171:147–183CrossRefGoogle Scholar
  16. Dell B, Sanmee R, Lumyong P, Lumyong S (2005) Ectomycorrhizal fungi in dry and wet dipterocarp forests in northern Thailand—diversity and use as food. Asia Pacific Association of Forestry Research Institutions (APAFRI). 8th Round-Table Conference on Dipterocarps. Ho Chi Minh, VietnamGoogle Scholar
  17. Dettman JR, Jacobson DJ, Taylor JW (2006) Multilocus sequence data revael extensive phylogenetic species diversity within the Neurospora discreta complex. Mycologia 98(3):436–446CrossRefPubMedGoogle Scholar
  18. Dörfelt H, Kiet TT, Berg A (2004) Neue Makromyceten-Kollektionen von Vietnam und deren systematische und ökogeographische Bedeutung. Feddes Repert 115:164–177CrossRefGoogle Scholar
  19. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedGoogle Scholar
  20. Fries EM (1838) Epicrisis systematis mycologici seu synopsis Hymenomycetum. UppsalaGoogle Scholar
  21. Garibay-Orijel R, Cifuentes J, Estrada-Toress A, Caballero J (2006) People using macro-fungal diversity in Oaxaca, Mexico. Fungal Divers 21:41–67Google Scholar
  22. Garibay-Orijel R, Caballero J, Estrada-Toress A, Cifuentes J (2007) Understanding cultural significance, the edible mushroom case. J Ethnobiol Ethnomed 3:4CrossRefPubMedGoogle Scholar
  23. Gathorne-Hardy FJ, Syaukani DRG, Eggleton P, Jones DT (2002) Quaternary rainforest refugia in south-east Asia: using termites (Isoptera) as indicators. Biol J Linn Soc 75:453–466CrossRefGoogle Scholar
  24. Goodman SM, Maminirina CP, Weyeneth N, Bradman HM, Christidis L, Ruedi M, Appleton B (2009) The use of molecular and morphological characters to resolve the taxonomic identity of cryptic species: the case of Miniopterus manavi (Chiroptera, Miniopteridae). Zool Scr 38(4):339–363CrossRefGoogle Scholar
  25. Hagino K, Takano Y, Horiguchi T (2009) Pseudo-cryptic speciation in Braarudosphaera bigelowii (Gran and Braarud) Deflandre. Mar Micropaleontol 72:210–221CrossRefGoogle Scholar
  26. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  27. Hallenberg N, Nilsson RH, Antonelli A, Wu SH, Maekawa N, Norden B (2007) The Peniophorella praetermissa species complex (Basidiomycota). Mycol Res 111:1366–1376CrossRefPubMedGoogle Scholar
  28. Hedh J, Samson P, Erland S, Tunlid A (2008) Multiple gene genealogies and species recognition in the ectomycorrhizal fungus Paxillus involutus. Mycol Res 112:965–975CrossRefPubMedGoogle Scholar
  29. Heilmann-Clausen J, Verbeken A, Vesterholt J (1998) The genus Lactarius. Fungi of Northern Europe, vol 2. Svampetryk, MundelstrupGoogle Scholar
  30. Heim R (1962) Contribution à la flore mycologique de la Thailande. Rev Mycol (Paris) 27:124–158Google Scholar
  31. Hesler LR, Smith AH (1979) North American species of Lactarius. University Michigan Press, Ann ArborGoogle Scholar
  32. Hongo T (1973) On some interesting larger fungi from New Guinea. Mycological reports from New Guinea and Salomon Islands, 15. Reports of the Tottori Mycological Institute 10:357–364Google Scholar
  33. Karunarathna SC, Yang ZL, Zhao R, Vellinga EC, Bahkali AH, Chukeatirote E, Hyde KD (2010) Three new species of Lentinus from northern Thailand. Mycol Progr. doi: 10.1007/s11557-010-0701-6 Google Scholar
  34. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298CrossRefPubMedGoogle Scholar
  35. Kauserud H, Stensrud O, Decock C, Shalchian-Tabrizi K, Schumacher T (2006) Multiple gene genealogies and AFLPs suggest cryptic speciation and long-distance dispersal in the basidiomycete Serpula himantioides (Boletales). Mol Ecol 15(2):421–431CrossRefPubMedGoogle Scholar
  36. Kauserud H, Shalchian-Tabrizi K, Decock C (2007) Multilocus sequencing reveals multiple geographically structured lineages of Coniophora arida and C. olivacea (Boletales) in North America. Mycologia 99(5):705–713CrossRefPubMedGoogle Scholar
  37. Kerekes J, Desjardin DE (2009) A monograph of the genera Crinipellis and Moniliophthora from Southeast Asia including a molecular phylogeny of the nrITS region. Fungal Divers 37:101–152Google Scholar
  38. Kornerup A, Wanscher JH (1978) Methuen handbook of colour, 3rd edn. Methuen, LondonGoogle Scholar
  39. Le HT (2007) Biodiversity of the genus Lactarius (Basidiomycota) in northern Thailand. PhD dissertation. Chiang Mai UniversityGoogle Scholar
  40. Le HT, Verbeken A, Nuytinck J, Lumyong S, Desjardin DE (2007a) Lactarius in Northern Thailand: 3. Lactarius subgenus Lactariopsis. Fungal Divers 102:281–291Google Scholar
  41. Le HT, Nuytinck J, Verbeken A, Lumyong S, Desjardin DE (2007b) Lactarius in Northern Thailand: 1. Lactarius subgenus Piperites. Fungal Divers 24:173–224Google Scholar
  42. Le HT, Stubbe S, Verbeken A, Nuytinck J, Lumyong S, Desjardin DE (2007c) Lactarius in Northern Thailand: 2. Lactarius subgenus Plinthogali. Fungal Divers 27:61–94Google Scholar
  43. Le Gac M, Hood ME, Fournier E, Giraud T (2007) Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution 61(1):15–26CrossRefPubMedGoogle Scholar
  44. Liu YJ, Wehlen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16(12):1799–1808PubMedGoogle Scholar
  45. Maire R (1937) Fungi Maroccani. Mém Soc Sci Nat Maroc 45:1–147Google Scholar
  46. Matheny PB (2005) Improving phylogenetic inference of mushrooms with rpb1 and rpb2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 35:1–20CrossRefPubMedGoogle Scholar
  47. Matute DR, McEwen JG, Montes BA, San-Blas G, Bagagli E, Rausher JT, Restrepo A, Morais F, Nino-Vega G, Taylor JW (2006) Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. Mol Biol Evol 23(1):65–73CrossRefPubMedGoogle Scholar
  48. Montoya L, Bandala VM, Guzmán G (1996) New and interesting species of Lactarius from Mexico including scanning electron microscope observations. Mycotaxon 57:411–424Google Scholar
  49. Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, ChichesterGoogle Scholar
  50. Munsell Soil Color Charts (2000) Munsell Color Company-x-rite. BaltimoreGoogle Scholar
  51. Murillo C, Albertazzi FJ, Carranza J, Lumbsch HT, Tamayo G (2009) Molecular data indicate that Rhytidhysteron rufulum (ascomycetes, Patellariales) in Costa Rica consists of four distinct lineages corroborated by morphological and chemical characters. Mycol Res 113(4):405–416CrossRefPubMedGoogle Scholar
  52. Neuhoff W (1956) Die Milchlinge. Bad HeilbrunnGoogle Scholar
  53. Nuytinck J, Verbeken A (2003) Lactarius sanguifluus versus Lactarius vinosus molecular and morphological analyses. Mycol Progr 2:227–234CrossRefGoogle Scholar
  54. Nuytinck J, Verbeken A (2005) Morphology and taxonomy of the European species in Lactarius sect. Deliciosi (Russulales). Mycotaxon 92:125–168Google Scholar
  55. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  56. Peck CH (1885) New species of Lactarius. Annual Report New York State Museum 38:111–133Google Scholar
  57. Penny D (2001) A 40.000 year palynological record from north-east Thailand; implications for biogeography and paleo-environmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 171:97–128CrossRefGoogle Scholar
  58. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  59. Pringle A, Baker DM, Platt JL, Wares JP, Latgé JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59(9):1886–1899PubMedGoogle Scholar
  60. Ragionieri L, Fratini S, Vannini M, Schubart CD (2009) Phylogenetic and morphometric differentiation reveal geographic radiation and pseudo-cryptic speciation in a mangrove crab from the Indo-West Pacific. Mol Phylogenet Evol 52:825–834CrossRefPubMedGoogle Scholar
  61. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  62. Sanmee R, Tulloss RE, Lumyong P, Dell B, Lumyong S (2008) Studies on Amanita (Basidiomycetes: Amanitaceae) in Northern Thailand. Fungal Divers 32:97–123Google Scholar
  63. Shimono Y, Hiroi M, Iwase K, Takamatsu S (2007) Molecular phylogeny of Lactarius volemus and its allies inferred from the nucleotide sequences of nuclear large subunit rDNA. Mycoscience 48:152–159CrossRefGoogle Scholar
  64. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690CrossRefPubMedGoogle Scholar
  65. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web Servers. Syst Biol 57(5):758–771CrossRefPubMedGoogle Scholar
  66. Steenkamp ET, Wingfield BD, Desjardins AE, Marasas WFO, Wingfield MJ (2002) Cryptic speciation in Fusarium subglutinans. Mycologia 94(6):1032–1043CrossRefPubMedGoogle Scholar
  67. Stuart BL, Inger RF, Voris HK (2006) High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol Lett 2:470–474CrossRefPubMedGoogle Scholar
  68. Stubbe D, Nuytinck J, Verbeken A (2008) Lactarius subgenus Plinthogalus of Malaysia. Fungal Divers 32:125–156Google Scholar
  69. Stubbe D, Nuytinck J, Verbeken A (2010) Critical assessment of the Lactarius gerardii species complex (Russulales). Fungal Biol 114:271–283CrossRefPubMedGoogle Scholar
  70. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  71. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:31–32CrossRefGoogle Scholar
  72. van der Kaars S, Penny D, Tibby J, Fluin J, Dam RAC, Suparan P (2001) Late Quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West Java, Indonesia. Palaeogeogr Palaeoclimatol Palaeoecol 171:185–212CrossRefGoogle Scholar
  73. Vellinga EC (1988) Glossary. In: Bas C, Kuyper TW, Noordeloos ME, Vellinga EC (eds) Flora Agaricina Neerlandica, vol 1. AA Balkema, Rotterdam, pp 54–64Google Scholar
  74. Verbeken A (1998) Studies in tropical African Lactarius species. 5. A synopsis of the subgenus Lactifluus (Burl.) Hesler and A.H. Sm. Emend. Mycotaxon 66:363–386Google Scholar
  75. Verbeken A, Horak E (2000) Lactarius (Basidiomycota) in Papua New Guinea—2. Species in tropical-montane rainforests. Aust Syst Bot 13(5):649–707CrossRefGoogle Scholar
  76. Verbeken A, Fraiture A, Walleyn R (1996) Waarnemingen betreffende Lactarius volemus (Bijdragen tot de kennis van het genus Lactarius in België. 3. De sectie Lactifluus. Sterbeeckia 17:37–43 [in Dutch]Google Scholar
  77. Verbruggen H, Leliaert F, Maggs CA, Shimada S, Schils T, Provan J, Booth D, Murphy S, De Clerck O, Littler DS, Littler MM, Coppejans E (2007) Species boundaries and phylogenetic relationships within the green algal genus Codium (Bryopsidales) based on plastid DNA sequences. Mol Phylogenet Evol 44(1):240–254CrossRefPubMedGoogle Scholar
  78. Wang XH (2007) Type studies of Lactarius species published from China. Mycologia 99(2):253–268CrossRefPubMedGoogle Scholar
  79. Wang XH, Liu P, Yu F (2004) Colour atlas of wild commercial mushrooms in Yunnan. Yunnan Science and Technology Press, Yunnan [in Chinese]Google Scholar
  80. Wannathes N, Desjardin DE, Hyde KD, Perry BA, Lumyong S (2009) A monograph of Marasmius (Basidiomycota) from Northern Thailand based on morphological and molecular (ITS sequences) data. Fungal Divers 37:209–306Google Scholar
  81. White TJ, Bruns T, Lee SS, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322Google Scholar
  82. White JC, Penny D, Kealhofer L, Maloney B (2004) Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand. Quatern Int 113:111–132CrossRefGoogle Scholar

Copyright information

© Kevin D. Hyde 2010

Authors and Affiliations

  • Kobeke Van de Putte
    • 1
    Email author
  • Jorinde Nuytinck
    • 1
  • Dirk Stubbe
    • 1
  • Huyen Thanh Le
    • 2
  • Annemieke Verbeken
    • 1
  1. 1.Research group Mycology, Department of BiologyGhent UniversityGhentBelgium
  2. 2.Faculty of EnvironmentHanoi University of Natural Resources and EnvironmentHanoiVietnam

Personalised recommendations