Advertisement

Transforming Heterogeneous Data into Knowledge for Personalized Treatments—A Use Case

  • Maria-Esther VidalEmail author
  • Kemele M. Endris
  • Samaneh Jazashoori
  • Ahmad Sakor
  • Ariam Rivas
Fachbeitrag
  • 44 Downloads

Abstract

Big data has exponentially grown in the last decade; it is expected to grow at a faster rate in the next years as a result of the advances in the technologies for data generation and ingestion. For instance, in the biomedical domain, a wide variety of methods are available for data ingestion, e.g., liquid biopsies and medical imaging, and the collected data can be represented using myriad formats, e.g., FASTQ and Nifti. In order to extract and manage valuable knowledge and insights from big data, the problem of data integration from structured and unstructured data needs to be effectively solved. In this paper, we devise a knowledge-driven approach able to transform disparate data into knowledge from which actions can be taken. The proposed framework resorts to computational extraction methods for mining knowledge from data sources, e.g., clinical notes, images, or scientific publications. Moreover, controlled vocabularies are utilized to annotate entities and a unified schema describes the meaning of these entities in a knowledge graph; entity linking methods discover links to existing knowledge graphs, e.g., DBpedia and Bio2RDF. A federated query engine enables the exploration of the linked knowledge graphs while knowledge discovery methods allow for uncovering patterns in the knowledge graphs. The proposed framework is used in the context of the EU H2020 funded project iASiS with the aim of paving the way for accurate diagnostics and personalized treatments.

Notes

Acknowledgements

This work has been partially funded by the EU H2020 Project No. 727658 (IASIS).

References

  1. 1.
    Acosta M, Vidal M, Lampo T, Castillo J, Ruckhaus E (2011) ANAPSID: an adaptive query processing engine for SPARQL endpoints. In: Proceedings of the 10th International Conference on The Semantic Web ISWC Bonn, 23.10.-27.10., pp 18–34  https://doi.org/10.1007/978-3-642-25073-6_2 Google Scholar
  2. 2.
    Acosta M, Simperl E, Flöck F, Vidal M (2017a) Enhancing answer completeness of SPARQL queries via crowdsourcing. J Web Semant 45:41–62Google Scholar
  3. 3.
    Acosta M, Vidal M, Sure-Vetter Y (2017b) Diefficiency metrics: measuring the continuous efficiency of query processing approaches. In: The Semantic Web – ISWC 2017 – 16th International Semantic Web ConferenceGoogle Scholar
  4. 4.
    Acosta M, Zaveri A, Simperl E, Kontokostas D, Flöck F, Lehmann J (2018) Detecting linked data quality issues via crowdsourcing: a dbpedia study. Semant Web 9(3):303–335Google Scholar
  5. 5.
    Agerri R, Artola X, Beloki Z, Rigau G, Soroa A (2015) Big data for natural language processing: a streaming approach. Knowl Based Syst 79:36–42Google Scholar
  6. 6.
    Schulz A, Matteini A, Isele R, Mendes PM, Bizer C, Becker C (2012) Ldif- a framework for large-scale linked data integration. In: Proceedings of the 21st International World Wide Web Conference WWW, Developers Track Lyon, 16.04.-20.04.Google Scholar
  7. 7.
    Angles R, Arenas M, Barceló P, Hogan A, Reutter JL, Vrgoc D (2017) Foundations of modern query languages for graph databases. ACM Comput Surv 50(5):68:1–68:40Google Scholar
  8. 8.
    Ceri S, Gottlob G, Tanca L (1989) What you always wanted to know about datalog (and never dared to ask). IEEE Trans Knowl Data Eng 1(1):146–166Google Scholar
  9. 9.
    Cheatham M, Cruz IF, Euzenat J, Pesquita C (2017) Special issue on ontology and linked data matching. Semant Web 8(2):183–184Google Scholar
  10. 10.
    Collarana D, Galkin M, Ribón IT, Vidal M, Lange C, Auer S (2017) MINTE: semantically integrating RDF graphs. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, WIMS 2017 Amantea, 19.06.-22.06..  https://doi.org/10.1145/3102254.3102280 Google Scholar
  11. 11.
    Collarana D, Galkin M, Lange C, Scerri S, Auer S, Vidal M (2018) Synthesizing knowledge graphs from web sources with the MINTE++ framework. In: The Semantic Web – ISWC 2018 – 17th International Semantic Web ConferenceGoogle Scholar
  12. 12.
    Cruz AL, Baranya A, Vidal M (2012) Medical image rendering and description driven by semantic annotations. In: Resource Discovery – 5th International Workshop, RED 2012, Co-located with the 9th Extended Semantic Web Conference, ESWC 2012 Heraklion, 27.05.2012, pp 123–149 (Revised Selected Papers)Google Scholar
  13. 13.
    Daiber J, Jakob M, Hokamp C, Mendes PN (2013) Improving efficiency and accuracy in multilingual entity extraction. In: I‑SEMANTICS 2013 – 9th International Conference on Semantic Systems, ISEM ’13 Graz, 04.09.‑06.09., pp 121–124Google Scholar
  14. 14.
    Dimou A, Sande MV, Colpaert P, Verborgh R, Mannens E, de Walle RV (2014) RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd International World Wide Web Conference (WWW 2014)Google Scholar
  15. 15.
    Doan AH, Halevy AY, Ives ZG (2012) Principles of Data Integration. Morgan Kaufmann, ISBN 978-0-12-416044-6, pp I–XVIII, 1–497Google Scholar
  16. 16.
    Endris KM, Galkin M, Lytra I, Mami MN, Vidal M, Auer S (2018) Querying interlinked data by bridging RDF molecule templates. T Large Scale Data Knowl Cent Syst 39:1–42Google Scholar
  17. 17.
    Euzenat J, Shvaiko P (2013) Ontology matching, 2nd edn. Springer, Berlin HeidelbergzbMATHGoogle Scholar
  18. 18.
    Galkin M, Collarana D, Ribón IT, Vidal M, Auer S (2017) Sjoin: A semantic join operator to integrate heterogeneous RDF graphs. In: Database and Expert Systems Applications – 28th International Conference, DEXA 2017 Lyon, 28.08.-31.08., pp 206–221 (Proceedings, Part I)Google Scholar
  19. 19.
    Gawriljuk G, Harth A, Knoblock CA, Szekely PA (2016) A scalable approach to incrementally building knowledge graphs. In: Research and Advanced Technology for Digital Libraries – 20th International Conference on Theory and Practice of Digital Libraries, TPDL 2016 Hannover, 05.09.‑09.09., pp 188–199 (Proceedings)Google Scholar
  20. 20.
    Getoor L (2013) Probabilistic soft logic: a scalable approach for markov random fields over continuous-valued variables – (abstract of keynote talk). In: Theory, Practice, and Applications of Rules on the Web – 7th International Symposium, RuleML 2013 Seattle, 11.07.-13.07., p 1 (Proceedings)Google Scholar
  21. 21.
    Golshan B, Halevy AY, Mihaila GA, Tan W (2017) Data integration: after the teenage years. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017 Chicago, 14.05.-19.05., pp 101–106Google Scholar
  22. 22.
    Halevy AY (2017) Technical perspective: building knowledge bases from messy data. Commun ACM 60(5):92Google Scholar
  23. 23.
    Halevy AY (2018) Information integration. In: Encyclopedia of Database Systems, 2nd edn.Google Scholar
  24. 24.
    Halevy AY, Rajaraman A, Ordille JJ (2006) Data integration: the teenage years. In: Proceedings of the 32nd International Conference on Very Large Data Bases Seoul, 12.09.-15.09., pp 9–16Google Scholar
  25. 25.
    Hasnain A, Mehmood Q, Sana E, Zainab S, Saleem M, Warren C, Zehra D, Decker S, Rebholz-Schuhmann D (2017) Biofed: federated query processing over life sciences linked open data. J Biomed Semantics 8(1):13Google Scholar
  26. 26.
    Hassanzadeh O, Chiang F, Miller RJ, Lee HC (2009) Framework for evaluating clustering algorithms in duplicate detection. Proceedings VLDB Endowment 2(1):1282–1293Google Scholar
  27. 27.
    Henning CA, Ewerth R (2018) Estimating the information gap between textual and visual representations. Int J Multimed Inf Retr 7(1):43–56Google Scholar
  28. 28.
    Hu W, Qiu H, Huang J, Dumontier M (2017) Biosearch: a semantic search engine for bio2rdf. Database.  https://doi.org/10.1093/database/bax059 Google Scholar
  29. 29.
    Isele R, Bizer C (2013) Active learning of expressive linkage rules using genetic programming. J Web Semant 23:2–15.  https://doi.org/10.1016/j.websem.2013.06.001 Google Scholar
  30. 30.
    Klimchuk OI, Konovalov KA, Perekhvatov VV, Skulachev KV, Dibrova DV, Mulkidjanian AY (2017) Cognat: a web server for comparative analysis of genomic neighborhoods. Biol Direct.  https://doi.org/10.1186/s13062-017-0196-z Google Scholar
  31. 31.
    Knoblock CA, Szekely PA (2015) Exploiting semantics for big data integration. AI Mag 36(1):25–38Google Scholar
  32. 32.
    Lenzerini M (2002) Data Integration: a theoretical perspective. In: Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems Madison, 03.06.‑05.06., pp 233–246Google Scholar
  33. 33.
    Libkin L, Reutter JL, Soto A, Vrgoc D (2018) TriAL: A navigational algebra for RDF triplestores. Acm Trans Database Syst 43(1):5:1–5:46MathSciNetGoogle Scholar
  34. 34.
    Livi CM, Klus P, Delli Ponti R, Tartaglia GG (2016) catrapid signature: identification of ribonucleoproteins and rna-binding regions. Bioinformatics 32(5):773–775.  https://doi.org/10.1093/bioinformatics/btv629 Google Scholar
  35. 35.
    Loster M, Naumann F, Ehmueller J, Feldmann B (2018) Curex: a system for extracting, curating, and exploring domain-specific knowledge graphs from text. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018 Torino, 22.10.-26.10.Google Scholar
  36. 36.
    Menasalvas E, González AR, Costumero R, Ambit H, Gonzalo C (2016) Clinical narrative analytics challenges. In: Rough Sets – International Joint Conference, IJCRS 2016 Santiago de Chile, 07.10.‑11.10., pp 23–32 (Proceedings)Google Scholar
  37. 37.
    Mendes PN, Mühleisen H, Bizer C (2012) Sieve: linked data quality assessment and fusion. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops Berlin, 30.03., pp 116–123Google Scholar
  38. 38.
    Ross MK, Wei W, Ohno-Machado L (2014) Big data and the electronic health record. IMIA yearbook of medical Informatics, vol 1Google Scholar
  39. 39.
    Mohammadi M, Atashin AA, Hofman W, Tan Y (2018) Comparison of ontology alignment systems across single matching task via the mcNemar’s test. TKDD 12(4):51:1–51:18Google Scholar
  40. 40.
    Munevar S (2017) Unlocking big data for better health. Nat Biotechnol 35(7):684–686.  https://doi.org/10.1038/nbt.3918 Google Scholar
  41. 41.
    Navigli R (2018) Natural language understanding: instructions for (present and future) use. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018 Stockholm, 13.07.-19.07., pp 5697–5702Google Scholar
  42. 42.
    Nentidis A, Bougiatiotis K, Krithara A, Paliouras G (2018) Semantic integration of disease-specific knowledge. In: Poster in European Conference on Computational Biology (ECCB18)Google Scholar
  43. 43.
    Ngomo ACN, Auer S (2011) Limes-a time-efficient approach for large-scale link discovery on the web of data. In: IJCAI, pp 2312–2317Google Scholar
  44. 44.
    Ortiz CA, Gonzalo-Martín C, Garcia-Pedrero A, Ruiz EM (2018) Supervoxels-based histon as a new alzheimer’s disease imaging biomarker. Sensors 18(6):1752Google Scholar
  45. 45.
    Palma G, Vidal M, Raschid L (2014) Drug-target interaction prediction using semantic similarity and edge partitioning. In: ISWCGoogle Scholar
  46. 46.
    Papachristou N, Puschmann D, Barnaghi P, Cooper B, Hu X, Maguire R, Apostolidis K, Conley YP, Hammer M, Katsaragakis S, Kober KM, Levine JD, McCann L, Patiraki E, Furlong EP, Fox PA, Paul SM, Ream E, Wright F, Miaskowski C (2018) Learning from data to predict future symptoms of oncology patients. PLoS ONE.  https://doi.org/10.1371/journal.pone.0208808 Google Scholar
  47. 47.
    Perez W, Tello A, Saquicela V, Vidal M, Cruz AL (2015) An automatic method for the enrichment of DICOM metadata using biomedical ontologies. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 Milan, 25.08.-29.08., pp 2551–2554Google Scholar
  48. 48.
    Priyatna F, Corcho Ó, Sequeda JF (2014) Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. In: 23rd International World Wide Web Conference, WWW ’14 Seoul, 07.04.–11.04., pp 479–490Google Scholar
  49. 49.
    Ristoski P, Bizer C, Paulheim H (2015) Mining the web of linked data with rapidminer. Web Semant 35:142–151Google Scholar
  50. 50.
    Ruiz EM, Tuñas JM, Bermejo G, Gonzalo-Martín C, González AR, Zanin M, de Pedro CG, Mendez M, Zaretskaia O, Rey J, Parejo C, Bermudez JLC, Provencio M (2018) Profiling lung cancer patients using electronic health records. J Med Syst 42(7):126:1–126:10Google Scholar
  51. 51.
    Sakor A, Mulang’ IO, Singh K, Shekarpour S, Vidal ME, Lehmann J, Auer S (2019) Old is gold: linguistic driven approach for entity and relation linking of short text. In: Proceedings of the NAACL HLTGoogle Scholar
  52. 52.
    Sequeda JF, Arenas M, Miranker DP (2014) OBDA: query rewriting or materialization? in practice, both! In: The Semantic Web – ISWC 2014 – 13th International Semantic Web Conference Riva del Garda, 19.10.-23.10., pp 535–551 (Proceedings, Part I)Google Scholar
  53. 53.
    Tukiainen T (2017) Landscape of x chromosome inactivation across human tissues. Nature.  https://doi.org/10.1038/nature24265 Google Scholar
  54. 54.
    Wiederhold G (1992) Mediators in the architecture of future information systems. IEEE Comput 25(3):38–49Google Scholar
  55. 55.
    Zadorozhny V, Raschid L, Vidal M, Urhan T, Bright L (2002) Efficient evaluation of queries in a mediator for websources. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data Madison, 03.06.‑06.06., pp 85–96Google Scholar
  56. 56.
    Zhong RY, Newman ST, Huang GQ, Lan S (2016) Big data for supply chain management in the service and manufacturing sectors: challenges, opportunities, and future perspectives. Comput Ind Eng 101:572–591Google Scholar

Copyright information

© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TIB Leibniz Information Centre for Science and TechnologyHannoverGermany

Personalised recommendations