, Volume 18, Issue 1, pp 15–25 | Cite as

Data Processing in Industrie 4.0

Data Analysis and Knowledge Management in Industrie 4.0


The pressure on companies to increase their flexibility and efficiency in manufacturing is constantly increasing. Factory managers therefore need to be able to obtain information in real-time across physical production systems for better decision making. Transparency on a production- and strategic level, for example, offers the advantage of being able to respond more quickly to volatile demand (time-to-market) and helps in reducing lead- and down-times. This can lead to a significant production gain and competitive advantage. Current approaches are challenged to bring results from the IoT world to decision makers in an appropriate manner. We introduce data models that serve as a mediator to create a better understanding between factory owners and data analysts. Particular challenges lie in the orchestration of the complex process steps, the vertical transparency of information, as well as in mutually contradictory optimization calculi (e.g., cost, speed, quality, sustainability). Due to better communication between factory managers, data analysts and people working at the line-side, the previously mentioned configurations can be implemented more transparently and consequently more efficiently.


Smart data management Complex event processing Data analytics Industrial Internet of Things (IIoT) 


  1. 1.
    Löffler C, Westkämper E, Unger K (2011) Change drivers and adaptation of automotive manufacturing. International Conference on Manufacturing Systems (ICMS), p 6Google Scholar
  2. 2.
    Westkämper E, Zahn E, Balve P, Tilebein M (2000) Ansätze zur Wandlungsfähigkeit von Produktionsunternehmen, WT. Werkstattstechnik 90:22–26Google Scholar
  3. 3.
    Eirinakis P, Buenabad-Chavez J, Fornasiero R, Gokmen H, Mascolo J, Mourtos I, Spieckermann S, Tountopoulos V, Werner F, Woitsch R (2017) A proposal of decentralised architecture for optimised operations in manufacturing ecosystem collaboration. Working Conference on Virtual Enterprises PRO-VECrossRefGoogle Scholar
  4. 4.
    Marz N, Warren J (2015) Big Data: Principles and best practices of scalable real-time data systems, ManningGoogle Scholar
  5. 5.
    Software AG (2016) Company white paper: the APAMA platform, under-the-covers: an in-depth view of ApamaGoogle Scholar
  6. 6.
    Software AG (2016) Product fact sheet: universal messaging. Accessed 13.02.2018Google Scholar
  7. 7.
    Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2007) KNIME: the Konstanz information miner, studies in classification, data analysis, and knowledge organization. Springer, Berlin, HeidelbergGoogle Scholar
  8. 8.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explorations 11(1):10–18CrossRefGoogle Scholar
  9. 9.
    R Core Team (2013) R: A language and environment for statistical, computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  10. 10.
    Krumeich J, Zapp M, Mayer D, Werth D, Loos P (2016) Modeling complex event patterns in EPC-models and transforming them into an executable event pattern language. Multikonferenz Wirtschaftsinformatik (MKWI), pp 81–92Google Scholar
  11. 11.
    Krumeich J, Mehdiyev N, Werth D, Loos P (2015) Towards an extended metamodel of event-driven process chains to model complex event patterns. 2nd International Workshop on Event Modeling and Processing in Business Process Management. Springer, Cham, SwitzerlandCrossRefGoogle Scholar
  12. 12.
    Software AG (2017) Company white paper: why you need zementis, predictive analytics. Accessed 13.02.2018Google Scholar
  13. 13.
    Frost & Sullivan (2016) Automotive Industry IT Spending, CIO Focus, Trends, and Highest Growth Areas, ReportGoogle Scholar
  14. 14.
    Woitsch R, Hrgovcic V (2011) Modelling knowledge: an open model approach. Proceedings of the 11th International Conference on Knowledge Management and Knowledge TechnologiesGoogle Scholar
  15. 15.
    Guschlbauer E, Lichka C (2013) Umsetzung des Prozesscontrollings, Prozessmanagement für Experten, Impulse für aktuelle und wiederkehrende Themen. Springer Gabler, Berlin HeidelbergGoogle Scholar
  16. 16.
    Woitsch R., Process-Oriented Knowledge Management: A Service-based Approach,PhD Thesis, Vienna (2004)Google Scholar
  17. 17.
    Woitsch R, Utz W, Hrgovcic V (2013) Integration von Prozess- und Wissensmanagement, Prozessmanagement für Experten, Impulse für aktuelle und wiederkehrende Themen. Springer Gabler, Berlin HeidelbergGoogle Scholar
  18. 18.
    Lichka C., Der modellbasierte Business Scorecarding-Ansatz zur Strategieoperationalisierung, University of Vienna, PhD Thesis (2006)Google Scholar
  19. 19.
    Karagiannis D, Woitsch R (2010) Knowledge engineering in business process management, business process management 2, strategic alignment, governance, people and culture. Springer, Berlin HeidelbergGoogle Scholar
  20. 20.
    Roussopoulos N, Utz W (2016) Design semantics on accessibility in unstructured data environment, domain specific conceptual modelling, concepts, methods and tools. Springer, Berlin HeidelbergGoogle Scholar
  21. 21.
    Utz W, Woitsch R (2017) A model-based environment for data services: energy-aware behavioral triggering using ADOxx. Collaboration in a data-rich world. PRO-VE 2017. vol 506. Springer, Berlin HeidelbergGoogle Scholar
  22. 22.
    Karagiannis D, Mayr H, Mylopoulos J (2016) Domain specific conceptual modelling, concepts, methods and tools. Springer, ChamCrossRefGoogle Scholar
  23. 23.
    Wooldridge M (2002) An introduction to multi-agent systems. Wiley & Sons, HobokenGoogle Scholar
  24. 24.
    Leitão P (2009) Agent-based distributed manufacturing control: a state-of-the-art survey. Eng Appl Artif Intell 22:979–991CrossRefGoogle Scholar
  25. 25.
    Middelhoek S, Hoogerwerf AC (1985) Smart sensors: when and where ? Sens Actuators 8(1):39–48CrossRefGoogle Scholar
  26. 26.
    Montironi MA, Castellini P, Stroppa L, Paone N (2014) Adaptive autonomous positioning of a robot vision system: application to quality control on production lines. Robot Comput Integr Manuf 30:489–498CrossRefGoogle Scholar
  27. 27.
    J‑ Parikh AD, Weihl WE (2004) Edge computing, extending enterprise applications to the edge of the internet. ACM New YorkGoogle Scholar
  28. 28.
    Satyanarayanan M, Simoens P, Xiao Y, Pillai P, Chen Z, Ha K, Hu W, Amos B (2015) Edge analytics in the Internet of things. IEEE Pervasive Comput 14:24–31CrossRefGoogle Scholar
  29. 29.
    Lee EA, Rabaey J, Hartmann B, Kubiatowicz J, Pister K, Sangiovanni-Vincentelli A, Seshia SA, Wawrzynek J, Wessel D, Jafari R, Jones D, Kumar V, Mangharam R, Pappas GJ, Rosing TS (2014) The swarm at the edge of the cloud. IEEE Des Test 31(3):8–20CrossRefGoogle Scholar
  30. 30.
    Kabáč M, Consel C, Volanschi N (2017) Designing parallel data processing for enabling large-scale sensor applications, Personal and Ubiquitous ComputingGoogle Scholar
  31. 31.
    Rossiter J (2003) Model-based predictive control: a practical approach. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Bemporad A (2006) Model predictive control design: new trends and tools. Proceedings of 45th IEEE Conference on Decision and ControlGoogle Scholar
  33. 33.
    Kouvaritakis B, Cannon M (2001) Non-linear predictive control: theory and practice, ISBN 978-0852969847, The Institution of Engineering and Technology, IEE PublishingGoogle Scholar
  34. 34.
    Park K, Zheng R, Liu X (2012) Cyber-physical systems: milestones and research challenges. Int J Comput Telecommun Ind 36:1–7Google Scholar
  35. 35.
    Stojanovic N, Dinic M, Stojanovic L (2015) Big data process analytics for continuous process improvement in manufacturing. Big Data, IEEE Publishing, Santa Clara, CA, USA, pp 1398–1407Google Scholar
  36. 36.
    Heemels W, De Schutter B, Bemporad A (2001) Equivalence of hybrid dynamical models. Automatica 37:1085–1091CrossRefMATHGoogle Scholar
  37. 37.
    Juloski A, Wieland S, Heemels WPMH (2005) A Bayesian approach to identification of hybrid systems. IEEE Trans Automat Contr 50(10):1520–1533MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Ferrari-Trecate G, Muselli M, Liberati D, Morari M (2003) A clustering technique for the identification of piecewise affine systems. Automatica 39:205–217MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Woitsch Robert, Hrgovcic Vedran, Robert B (2012) Knowledge product modelling for industry: the PROMOTE approach. 14th IFAC Symposium on Information Control Problems in Manufacturing, International Federation of Automatic ControlGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Software AGSaarbrückenGermany
  2. 2.BOC Asset Management GmbHViennaAustria

Personalised recommendations