Datenbank-Spektrum

, Volume 18, Issue 1, pp 57–62 | Cite as

Diversity of Processing Units

An Attempt to Classify the Plethora of Modern Processing Units
Kurz erklärt
  • 48 Downloads

Abstract

Recent hardware developments are providing a plethora of alternatives to well-known general-purpose processing units. This development reaches into all major directions, i.e., into high-speed and low latency communications systems, novel memory components as well as a zoo of different processing units in addition to the traditional CPU-style processors. While all developments have great impact on the design of database systems, we will try—in the context of this Kurz Erklärt—to categorize recent advances in the context of processing units and comment on the impact on database systems.

Keywords

Database Systems Modern Hardware Diversity of Compute Units 

Notes

Acknowledgements

This work is partly funded by the German Research Foundation (DFG) in the Collaborative Research Center 912 Highly Adaptive Energy-Efficient Computing and within the Cluster of Excellence Center for Advancing Electronics Dresden (Orchestration Path).

References

  1. 1.
    Agrawal SR, Idicula S, Raghavan A, Vlachos E, Govindaraju V, Varadarajan V, Balkesen C, Giannikis G, Roth C, Agarwal N, Sedlar E (2017) A many-core architecture for in-memory data processing. In: MICRO, pp 245–258Google Scholar
  2. 2.
    Barthels C, Loesing S, Alonso G, Kossmann D (2015) Rack-scale in-memory join processing using rdma. In: SIGMOD, pp 1463–1475Google Scholar
  3. 3.
    Damme P, Habich D, Hildebrandt J, Lehner W (2017) Lightweight data compression algorithms: an experimental survey (experiments and analyses). In: EDBT, pp 72–83Google Scholar
  4. 4.
    Dreseler M, Kissinger T, Dürken T, Lüubke E, Uflacker M, Habich D, Plattner H, Lehner W (2017) Hardware-accelerated memory operations on large-scale numa systems. In: ADMS@VLDBGoogle Scholar
  5. 5.
    FPGA I (2018a) Intel max 10 fpgas – overview. https://www.altera.com/products/fpga/max-series/max-10/overview.html. Accessed 5 Jan 2018Google Scholar
  6. 6.
    FPGA I (2018b) Intel stratix 10 fpgas – overview. https://www.altera.com/products/fpga/stratix-series/stratix-10/overview.html. Accessed 5 Jan 2018Google Scholar
  7. 7.
    Haas S, Arnold O, Nöthen B, Scholze S, Ellguth G, Dixius A, Höppner S, Schiefer S, Hartmann S, Henker S et al (2016) An mpsoc for energy-efficient database query processing. In: DAC, pp 1–6Google Scholar
  8. 8.
    Haas S, Scholze S, Höppner S, Ungethüm A, Mayr C, Schüffny R, Lehner W, Fettweis G (2017) Application-specific architectures for energy-efficient database query processing and optimization. Microprocess Microsyst 55:119–130CrossRefGoogle Scholar
  9. 9.
  10. 10.
    IBM (2014) Coherent accelerator processor interface (capi) for power8 systems, white paper. https://www-304.ibm.com/webapp/set2/sas/f/capi/CAPI_POWER8.pdf. Accessed 2 Jan 2018Google Scholar
  11. 11.
    IBM (2016) Data engine for nosql – power systems edition. http://www.ibm.biz/capiflash. Accessed 2 Jan 2018Google Scholar
  12. 12.
    Intel (2018a) Intel fpgas – socs – product overview. https://www.altera.com/products/soc/overview.html. Accessed 1 Jan 2018Google Scholar
  13. 13.
    Intel (2018b) Intel hardware accelerator research program. https://software.intel.com/en-us/hardware-accelerator-research-program. Accessed 5 Jan 2018Google Scholar
  14. 14.
    Jouppi NP et al (2017) In-datacenter performance analysis of a tensor processing unit. https://arxiv.org/pdf/1704.04760.pdf. Accessed 2018-01-03CrossRefGoogle Scholar
  15. 15.
    Karnagel T, Habich D (2017) Heterogeneous placement optimization for database query processing. it Inf Technol 59(3):117Google Scholar
  16. 16.
    Karnagel T, Habich D, Lehner W (2017) Adaptive work placement for query processing on heterogeneous computing resources. Proceedings VLDB Endowment 10(7):733–744CrossRefGoogle Scholar
  17. 17.
    Kissinger T, Habich D, Lehner W (2018) Adaptive energy-control for in-memory database systems. In: SIGMODGoogle Scholar
  18. 18.
    Lehner W (2017) The data center under your desk – how disruptive is modern hardware for db system design? Proceedings VLDB Endowment 10(12):2018–2019CrossRefGoogle Scholar
  19. 19.
    Li F, Das S, Syamala M, Narasayya VR (2016) Accelerating relational databases by leveraging remote memory and rdma. In: SIGMOD, pp 355–370CrossRefGoogle Scholar
  20. 20.
    NEC (2017) Nec accelerates machine learning for vector computers. http://www.nec.com/en/press/201707/global_20170703_02.html. Accessed 4 Jan 2018Google Scholar
  21. 21.
    Nvidia (2017) Volta architecture whitepaper. http://www.nvidia.com/object/volta-architecture-whitepaper.html. Accessed 5 Jan 2018Google Scholar
  22. 22.
    Oukid I, Kettler R, Willhalm T (2017) Storage class memory and databases: opportunities and challenges. it Inf Technol 59(3):109Google Scholar
  23. 23.
    Salama A, Binnig C, Kraska T, Scherp A, Ziegler T (2017) Rethinking distributed query execution on high-speed networks. IEEE Data Eng Bull 40(1):27–37Google Scholar
  24. 24.
    SGI (2016) SGI UV 300H for SAP HANA. https://www.sgi.com/pdfs/4554.pdf. Accessed 2018-01-03Google Scholar
  25. 25.
    InfiniBand Trade Association (2015) Infiniband roadmap. http://www.infinibandta.org/content/pages.php?pg=technology_overview. Accessed 2018-01-03Google Scholar
  26. 26.
    Teubner J (2017) Fpgas for data processing: current state. it Inf Technol 59(3):125–131Google Scholar
  27. 27.
    Ungethüm A, Kissinger T, Mentzel W, Habich D, Lehner W (2016) Energy elasticity on heterogeneous hardware using adaptive resource reconfiguration LIVE. In: SIGMOD, pp 2173–2176CrossRefGoogle Scholar
  28. 28.
    Willhalm T, Popovici N, Boshmaf Y, Plattner H, Zeier A, Schaffner J (2009) Simd-scan: ultra fast in-memory table scan using on-chip vector processing units. Proceedings VLDB Endowment 2(1):385–394CrossRefGoogle Scholar
  29. 29.
    Woods L, Istvan Z, Alonso G (2013a) Hybrid fpga-accelerated sql query processing. In: FPL, pp 1–1Google Scholar
  30. 30.
    Woods L, Teubner J, Alonso G (2013b) Less watts, more performance: an intelligent storage engine for data appliances. In: SIGMOD, pp 1073–1076Google Scholar
  31. 31.
    Xilinx (2017) Xilinx data sheets – spartan-7 series. https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf. Accessed 1 Jan 2018Google Scholar
  32. 32.
    Xilinx (2018) Xilinx programmable devices – product overview. https://www.xilinx.com/products/silicon-devices/soc.html. Accessed 1 Jan 2018Google Scholar
  33. 33.
    Young J, Wu H, Yalamanchili S (2012) Satisfying data-intensive queries using GPU clusters. In: SC companion: high performance computing, networking storage and analysis, p 1314Google Scholar
  34. 34.
    Ziener D, Bauer F, Becher A, Dennl C, Meyer-Wegener K, Schürfeld U, Teich J, Vogt JS, Weber H (2016) Fpga-based dynamically reconfigurable sql query processing. ACM Trans Reconfigurable Technol Syst 9(4)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Database Research GroupTechnische Universität DresdenDresdenGermany

Personalised recommendations