, Volume 17, Issue 2, pp 131–137 | Cite as

Dynamic Event-Activity Networks in Public Transportation

Timetable Information and Delay Management
  • Matthias Müller-Hannemann
  • Ralf Rückert


Real-time timetable information and delay management in public transportation systems are two challenging applications which can be modeled as optimization problems on dynamically changing, large and complex graphs, so-called event-activity networks.

We describe both applications in detail, review the state-of-the-art and explain the requirements for systems solving these problems in a productive environment. Focussing on recent research on decision support for train dispatchers, we sketch the system architecture for the software prototype PANDA.



The authors acknowledge partial support by grant MU 1482/7-1 within the DFG research group FOR 2083 Integrated Planning in Public Transport and by Deutsche Bahn.


  1. 1.
    Bast H, Carlsson E, Eigenwillig A, Geisberger R, Harrelson C, Raychev V, Viger F (2010) Fast routing in very large public transportation networks using transfer patterns. In: de Berg M, Meyer U (eds) Algorithms - ESA 2010. Lecture Notes in Computer Science, Vol. 6346. Springer, Berlin Heidelberg, p 290–301CrossRefGoogle Scholar
  2. 2.
    Bast H, Delling D, Goldberg AV, Müller-Hannemann M, Pajor T, Sanders P, Wagner D, Werneck RF (2016) Route planning in transportation networks. In: Kliemann L, Sanders P (eds) Algorithm engineering - selected results and surveys. Lecture Notes in Computer Science, Vol. 9220. Springer, Berlin Heidelberg, p 19–80CrossRefGoogle Scholar
  3. 3.
    Bauer R, Schöbel A (2014) Rules of thumb — practical online strategies for delay management. Public Transp 6:85–105CrossRefGoogle Scholar
  4. 4.
    Berger A, Blaar C, Gebhardt A, Müller-Hannemann M, Schnee M (2011) Passenger flow-oriented train disposition. In: Demetrescu C, Halldórsson MM (eds) Proceedings of the 19th Annual European Symposium on Algorithms (ESA). Lecture Notes in Computer Science, Vol. 6942. Springer, Berlin Heidelberg, p 227–238Google Scholar
  5. 5.
    Berger, F (2016) GPU-basierte Parallelisierung von Reiseanfragen im Bahnverkehr mittels CUDA. Master’s thesis, Institut für Informatik, Martin-Luther-Universität Halle-WittenbergGoogle Scholar
  6. 6.
    Delling D, Dibbelt J, Pajor T, Werneck RF (2015) Public transit labeling. In: Bampis E (eds) Experimental Algorithms - 14th International Symposium, SEA 2015. Lecture Notes in Computer Science, Vol. 9125. Springer, Berlin Heidelberg, p 273–285Google Scholar
  7. 7.
    Delling D, Pajor T, Werneck RF (2015) Round-based public transit routing. Transp Sci 49(3):591–604. doi: 10.1287/trsc.2014.0534 CrossRefGoogle Scholar
  8. 8.
    Dibbelt J, Pajor T, Strasser B, Wagner D (2013) Intriguingly simple and fast transit routing. In: Bonifaci V, Demetrescu C, Marchetti-Spaccamela A (eds) Experimental algorithms, SEA 2013. Lecture Notes in Computer Science, Vol. 7933. Springer, Berlin Heidelberg, p 43–54Google Scholar
  9. 9.
    Dollevoet T, Huisman D (2014) Fast heuristics for delay management with passenger rerouting. Public Transp 6:67–84CrossRefGoogle Scholar
  10. 10.
    Dollevoet T, Huisman D, Schmidt M, Schöbel A (2012) Delay management with rerouting of passengers. Transp Sci 46(1):74–89CrossRefGoogle Scholar
  11. 11.
    HaCon (2017) HAFAS - the perfect connection to your customers. Accessed: 19. Febr. 2017Google Scholar
  12. 12.
    Kanai S, Shiina K, Harada S, Tomii N (2011) An optimal delay management algorithm from passengers’ viewpoints considering the whole railway network. J Rail Transp Plan Manag 1:25–37CrossRefGoogle Scholar
  13. 13.
    Kliewer N, Suhl L (2011) A note on the online nature of the railway delay management problem. Networks 57:28–37MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lemnian M, Rückert R, Rechner S, Blendinger C, Müller-Hannemann M (2014) Timing of train disposition: Towards early passenger rerouting in case of delays. In: Funke S, Mihalák M (eds) 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2014. OASICS, Vol. 42. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, Wadern, p 122–137Google Scholar
  15. 15.
    Müller-Hannemann M, Schnee M (2009) Efficient timetable information in the presence of delays. In: Ahuja R, Möhring RH, Zaroliagis C (eds) Robust and online large-scale optimization. Lecture notes in computer science, Vol. 5868. Springer, Berlin Heidelberg, p 249–272CrossRefGoogle Scholar
  16. 16.
    Müller-Hannemann M, Schulz F, Wagner D, Zaroliagis C (2007) Timetable information: models and algorithms. In: Algorithmic methods for railway optimization. Lecture notes in computer science, Vol. 4395. Springer, Berlin Heidelberg, p 67–89CrossRefGoogle Scholar
  17. 17.
    Rodriguez MA (2015) The Gremlin graph traversal machine and language (invited talk). In: Proceedings of the 15th Symposium on Database Programming Languages, DBPL 2015. ACM, New York, p 1–10Google Scholar
  18. 18.
    Rückert R, Lemnian M, Blendinger C, Rechner S, Müller-Hannemann M (2016) PANDA: a software tool for improved train dispatching with focus on passenger flow. Public Transportation. doi: 10.1007/s12469-016-0140-0 Google Scholar
  19. 19.
    Schöbel A (2001) A model for the delay management problem based on mixed-integer programming. Electron Notes Theor Comput Sci 50(1): 1–10. doi: 10.1016/S1571-0661(04)00160-4
  20. 20.
    Schöbel A (2006) Customer-oriented optimization in public transportation. Springer, BerlinMATHGoogle Scholar
  21. 21.
    Witt S (2015) Trip-based public transit routing. In: Bansal N, Finocchi I (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science, Vol. 9294. Springer, Berlin Heidelberg, p 1025–1036CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut für InformatikMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations