Advertisement

Datenbank-Spektrum

, Volume 15, Issue 3, pp 175–184 | Cite as

VAT: A System for Visualizing, Analyzing and Transforming Spatial Data in Science

  • Christian Authmann
  • Christian Beilschmidt
  • Johannes Drönner
  • Michael Mattig
  • Bernhard Seeger
SCHWERPUNKTBEITRAG

Abstract

The amount of available data changes the style of research in geo-scientific domains, and thus influences the requirements for spatial processing systems. To support data-driven research and exploratory workflows, we propose the Visualization, Analysis & Transformation system (VAT). We first identify ten fundamental requirements, which span from supporting spatial data types over low latency computations to visualization techniques. Based on these we evaluate state-of-the-art systems from the domains of spatial frameworks, GIS, workflow systems, scientific databases and Big Data solutions. The goal of the VAT system is to overcome the identified limitations by a holistic approach to raster and vector data, demand-driven and tiled processing, and the efficient usage of heterogeneous hardware architectures. A first comparison with other systems shows the validity of our approach.

Keywords

Geographic Information System Coordinate Reference System Raster Data Geographic Information System Application Resilient Distribute Dataset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under grant no. SE 553/7-1 (GFBio) and by the Bundesministerium für Bildung und Forschung (BMBF) under grant no. 01LL1301 (IDESSA).

Literatur

  1. 1.
    Aji A, Wang F, Vo H et al (2013) Hadoop-GIS: a High Performance Spatial Data Warehousing System over MapReduce. Proceedings VLDB Endowment 6(11): 1009-1020Google Scholar
  2. 2.
    Andrienko G, Andrienko N, Demsar U, Dransch D, Dykes J, Fabrikant SI, Jern M, Kraak MJ, Schumann H, Tominski C (2010) Space, time and visual analytics. Int J Geogr Inf Sci 24(10):1577–1600Google Scholar
  3. 3.
    Authmann C, Beilschmidt C, Drönner J, Mattig M, Seeger B (2015) Rethinking Spatial Processing in Data-Intensive Science. BTW 2015 WorkshopGoogle Scholar
  4. 4.
    Bach K, Schäfer D, Enke N et al (2012) A comparative evaluation of technical solutions for long-term data repositories in integrative biodiversity research. Ecological Informatics 11:16–24Google Scholar
  5. 5.
    Baumann P, Dehmel A, Furtado P et al (1998) The Multidimensional Database System RasDaMan. In: ACM SIGMOD Conference '98, pp. 575–577. ACMGoogle Scholar
  6. 6.
    Baumgärtner L, Strack C, Hossbach B, Seidemann M, Seeger B, Freisleben B (2015) Complex Event Processing for Reactive Security Monitoring in Virtualized Computer Systems. The 9th ACM International Conference on Distributed Event-Based SystemsGoogle Scholar
  7. 7.
    Bose R, Frew J (2005) Lineage retrieval for scientific data processing: a survey. ACM Computing Surveys 37 (CSUR) (1):1–28Google Scholar
  8. 8.
    Brown PG (2010) Overview of sciDB: large scale array storage, processing and analysis. In: Proc. of the ACM SIGMOD Conference, pp. 963–968Google Scholar
  9. 9.
    Corvalan C, Hales S, McMichael AJ (2005) Ecosystems and human well-being: health synthesis. World health organizationGoogle Scholar
  10. 10.
    Cuevas-Vicenttín V, Dey S et al Scientific Workflows and Provenance: Introduction and Research Opportunities. Datenbank-Spektrum 12 (3), 193–203 (2012)Google Scholar
  11. 11.
    Dean J, Ghemawat S (2008) Mapreduce. Comm. of the ACM 51(1):107Google Scholar
  12. 12.
    Diepenbroek M, Glöckner F, Grobe P et al (2014) Towards an Integrated Biodiversity and Ecological Research Data Management and Archiving Platform: The German Federation for the Curation of Biological Data (GFBio). GI: Informatik 2014 – Big Data Komplexität meisternGoogle Scholar
  13. 13.
    Garcia-Molina H, Ullman JD, Widom J (2000) Database system implementation, vol. 654. Prentice Hall Upper Saddle River, NJGoogle Scholar
  14. 14.
    Hey AJ, Tansley S, Tolle KM et al (2009) The Fourth Paradigm: Data-Intensive Scientific Discovery, vol. 1. Microsoft Research Redmond, WAGoogle Scholar
  15. 15.
    Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978Google Scholar
  16. 16.
    Jetz W, McPherson JM, Guralnick RP (2012) Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol & Evol 27(3):151–159Google Scholar
  17. 17.
    Kini A, Emanuele R (2014) Geotrellis: Adding Geospatial Capabilities to Spark. Spark Summit 2014Google Scholar
  18. 18.
    Kyriazis G (2012) Heterogeneous system architecture: a technical review. AMD Fusion Developer SummitGoogle Scholar
  19. 19.
    Lam C (2010) Hadoop in Action, 1st edn. Manning Pub., Greenwich, CT, USAGoogle Scholar
  20. 20.
    Manyika J, Chui M, Brown B et al (2011) Big data: the next frontier for innovation, competition, and productivity. McKinsey Global InstituteGoogle Scholar
  21. 21.
    McLennan M, Clark S, Deelman E, Rynge M, Vahi K, McKenna F, Kearney D, Song C (2013) Bringing scientific workflow to the masses via Pegasus and HUBzero. Proceedings of the 5th International Workshop on Science Gateways 13 p. 14Google Scholar
  22. 22.
    {Open Geospatial Consortium Inc.} (2011) OpenGIS Implementation Standard for Geographic information - Simple feature access - Part 1: Common architectureGoogle Scholar
  23. 23.
    Vitolo C, Elkhatib Y, Reusser D et al (2015) Web technologies for environmental Big Data. Environmental Modelling & Software 63 pp. 185–198Google Scholar
  24. 24.
    Warmerdam F (2008) The geospatial data abstraction library. Open Source Approaches in Spatial Data Handling. Springer, Berlin Heidelberg pp. 87–104Google Scholar
  25. 25.
    Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I (2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX AssociationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christian Authmann
    • 1
  • Christian Beilschmidt
    • 1
  • Johannes Drönner
    • 1
  • Michael Mattig
    • 1
  • Bernhard Seeger
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of MarburgMarburgGermany

Personalised recommendations