Advertisement

Datenbank-Spektrum

, Volume 13, Issue 3, pp 167–178 | Cite as

JEPC: The Java Event Processing Connectivity

  • Bastian Hoßbach
  • Nikolaus Glombiewski
  • Andreas Morgen
  • Franz Ritter
  • Bernhard Seeger
Schwerpunktbeitrag

Keywords

Query processing Stream management 

Zusammenfassung

Today, event processing (EP) is the first choice technology for analyzing massive event streams in a timely manner. EP allows to detect user-defined situations of interest, like in streaming position events for example, in near real-time such that actions can be taken immediately. Unfortunately, each specific EP system has its very own API and query language because there are no standards. The exchange of EP systems as well as their use within a federation is challenging, error-prone, and expensive. To overcome these problems, we introduce the Java Event Processing Connectivity (JEPC) that is a middleware for uniform EP functionality in Java. JEPC provides always the same API and query language for EP completely independent of the EP system beneath. Furthermore, we show in detail how JEPC can integrate database systems besides EP systems and evaluate the performance of EP powered by databases systems.

Notes

Acknowledgements

This work has been supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) under grant no. 16BY1206A.

References

  1. 1.
    Appelrath H, Geesen D, Grawunder M, Michelsen T, Nicklas D (2012) Odysseus—a highly customizable framework for creating efficient event stream management systems. In: DEBS, pp 367–368 CrossRefGoogle Scholar
  2. 2.
    Arasu A, Babu S, Widom J (2006) The CQL continuous query language: semantic foundations and query execution. VLDB J 15(2):121–142 CrossRefGoogle Scholar
  3. 3.
    Babu S, Widom J (2001) Continuous queries over data streams. SIGMOD Rec 30(3):109–120 CrossRefGoogle Scholar
  4. 4.
    Blakeley J, Larson P, Tompa F (1986) Efficiently updating materialized views. In: SIGMOD, pp 61–71 Google Scholar
  5. 5.
    Cugola G, Margara A (2012) Processing flows of information: from data stream to complex event processing. ACM Comput Surv 44(3):15:1–15:62 CrossRefGoogle Scholar
  6. 6.
    Dayal U, Goodman N, Katz R (1982) An extended relational algebra with control over duplicate elimination. In: PODS, pp 117–123 Google Scholar
  7. 7.
    Demers A, Gehrke J, Panda B, Riedewald M, Sharma V, White W (2007) Cayuga: a general purpose event monitoring system. In: CIDR, pp 412–422 Google Scholar
  8. 8.
    Dindar N, Tatbul N, Miller R, Haas L, Botan I (2013) Modeling the execution semantics of stream processing engines with SECRET. VLDB J 22(4):421–446 CrossRefGoogle Scholar
  9. 9.
    Ding L, Rundensteiner E (2004) Evaluating window joins over punctuated streams. In: CIKM, pp 98–107 CrossRefGoogle Scholar
  10. 10.
    Eckert M, Bry F (2009) Complex event processing (CEP). Inform-Spektrum 32(2):163–167 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Glombiewski N, Hoßbach B, Morgen A, Ritter F, Seeger B (2013) Event processing on your own database. In: BTW workshops, pp 33–42 Google Scholar
  13. 13.
    H2 Database Engine (2013) http://www.h2database.com/
  14. 14.
    Hirte S, Schubert E, Seifert A, Baumann S, Klan D, Sattler K (2012) Data3—a kinect interface for OLAP using complex event processing. In: ICDE, pp 1297–1300 Google Scholar
  15. 15.
    Hoßbach B, Seeger B (2013) Anomaly management using complex event processing. In: EDBT, pp 149–154 CrossRefGoogle Scholar
  16. 16.
    Hoßbach B, Freisleben B, Seeger B (2012) Reaktives cloud monitoring mit complex event processing. Datenbank Spektrum 12(1):33–42 CrossRefGoogle Scholar
  17. 17.
    Jain N et al. (2008) Towards a streaming SQL standard. PVLDB 1(2):1379–1390 Google Scholar
  18. 18.
    Java Event Processing Connectivity (2013) http://dbs.mathematik.uni-marburg.de/research/projects/jepc/
  19. 19.
    Krämer J, Seeger B (2009) Semantics and implementation of continuous sliding window queries over data streams. TODS 34(1):4:1–4:49 CrossRefGoogle Scholar
  20. 20.
    Law Y, Wang H, Zaniolo C (2011) Relational languages and data models for continuous queries on sequences and data streams. TODS 36(2):8:1–8:32 CrossRefGoogle Scholar
  21. 21.
    Luckham D (2001) The power of events: an introduction to complex event processing in distributed enterprise systems. Addison-Wesley/Longman, Reading/Harlow Google Scholar
  22. 22.
    Meijer E (2011) The world according to LINQ. Commun ACM 54(10):45–51 CrossRefGoogle Scholar
  23. 23.
    PostgreSQL (2013) http://www.postgresql.org/
  24. 24.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bastian Hoßbach
    • 1
  • Nikolaus Glombiewski
    • 1
  • Andreas Morgen
    • 1
  • Franz Ritter
    • 1
  • Bernhard Seeger
    • 1
  1. 1.Database Research GroupUniversity of MarburgMarburgGermany

Personalised recommendations