, Volume 10, Issue 1, pp 15–24 | Cite as

Query Logs as Folksonomies

  • Dominik BenzEmail author
  • Andreas Hotho
  • Robert Jäschke
  • Beate Krause
  • Gerd Stumme


Query logs provide a valuable resource for preference information in search. A user clicking on a specific resource after submitting a query indicates that the resource has some relevance with respect to the query. To leverage the information of query logs, one can relate submitted queries from specific users to their clicked resources and build a tripartite graph of users, resources and queries. This graph resembles the folksonomy structure of social bookmarking systems, where users add tags to resources. In this article, we summarize our work on building folksonomies from query log files. The focus is on three comparative studies of the system’s content, structure and semantics. Our results show that query logs incorporate typical folksonomy properties and that approaches to leverage the inherent semantics of folksonomies can be applied to query logs as well.


Random Graph Cluster Coefficient Small World Property Query Word Average Short Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by the European Commission in the project “Tagora—Emergent Semiotics in Social Online Communities”, by the Microsoft Grant “Social Search” and by DFG in the project “Info 2.0—Informationelle Selbstbestimmung im Web 2.0”.


  1. 1.
    Baeza-Yates R, Tiberi A (2007) Extracting semantic relations from query logs. In: KDD ’07: proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 76–85. ISBN 9781595936097. doi:  10.1145/1281192.1281204 CrossRefGoogle Scholar
  2. 2.
    Benz D, Krause B, Praveen Kumar G, Hotho A, Stumme G (2009) Characterizing semantic relatedness of search query terms. In: Proceedings of the 1st workshop on explorative analytics of information networks (EIN2009), Bled, Slovenia, September 2009 Google Scholar
  3. 3.
    Budanitsky A, Hirst G (2006) Evaluating wordnet-based measures of lexical semantic relatedness. Comput Linguist 32(1):13–47 CrossRefGoogle Scholar
  4. 4.
    Cattuto C, Schmitz C, Baldassarri A, Servedio VDP, Loreto V, Hotho A, Grahl M, Stumme G (2007) Network properties of folksonomies. AI Commun 20(4):245–262 MathSciNetGoogle Scholar
  5. 5.
    Cattuto C, Benz D, Hotho A, Stumme G (2008) Semantic grounding of tag relatedness in social bookmarking systems. In: The semantic web—ISWC 2008. Springer, Berlin, pp 615–631. ISSN 0302-9743 CrossRefGoogle Scholar
  6. 6.
    Fellbaum C (ed) (1998) WordNet: an electronic lexical database. MIT, Cambridge zbMATHGoogle Scholar
  7. 7.
    Halpin H, Robu V, Shepard H (2006) The dynamics and semantics of collaborative tagging. In: Proceedings of the 1st semantic authoring and annotation workshop (SAAW’06), pp 211–220 Google Scholar
  8. 8.
    Hotho A, Jäschke R, Schmitz C, Stumme G (2006) Information retrieval in folksonomies: search and ranking. In: Sure Y, Domingue J (eds) The semantic web: research and applications. Lecture notes in computer science, vol 4011. Springer, Heidelberg, pp 411–426 CrossRefGoogle Scholar
  9. 9.
    Jiang JJ, Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the international conference on research in computational linguistics (ROCLING), pp 19–33. Taiwan Google Scholar
  10. 10.
    Jäschke R, Krause B, Hotho A, Stumme G (2008) Logsonomy—a search engine folksonomy. In: Proceedings of the second international conference on weblogs and social media (ICWSM 2008). AAAI Press, Menlo Park, pp 192–193 Google Scholar
  11. 11.
    Krause B, Hotho A, Stumme G (2008) A comparison of social bookmarking with traditional search. In: Macdonald C, Ounis I, Plachouras V, Ruthven I., White RW (eds) Advances in information retrieval, 30th European conference on IR research, ECIR 2008, pp 101–113 Google Scholar
  12. 12.
    Krause B, Jäschke R, Hotho A, Stumme G (2008) Logsonomy—social information retrieval with logdata. In: HT ’08: proceedings of the nineteenth ACM conference on hypertext and hypermedia. ACM, New York, pp 157–166. ISBN 978-1-59593-985-2. doi:  10.1145/1379092.1379123 CrossRefGoogle Scholar
  13. 13.
    Pass G, Chowdhury A, Torgeson C (2006) A picture of search. In: Proceedings of the 1st international conference on scalable information systems. ACM, New York, p 1 CrossRefGoogle Scholar
  14. 14.
    Watts DJ, Strogatz S (1998) Collective dynamics of ’small-world’ networks. Nature 393:440–442 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dominik Benz
    • 1
    Email author
  • Andreas Hotho
    • 2
  • Robert Jäschke
    • 1
  • Beate Krause
    • 1
  • Gerd Stumme
    • 1
  1. 1.Hertie-Stiftungslehrstuhl WissensverarbeitungUniversität KasselKasselGermany
  2. 2.Data-Mining- und Information-Retrieval-GruppeUniversität WürzburgWürzburgGermany

Personalised recommendations