BMSAP

, Volume 29, Issue 1–2, pp 1–18 | Cite as

Using classifications to identify pathological and taphonomic modifications on ancient bones: Do “taphognomonic” criteria exist?

Article / Article
  • 69 Downloads

Abstract

Pathological and taphonomic agents can sometimes produce bone modifications that seem indistinguishable from one another, even to an experienced eye. The aim of this study is to propose a classification system to identify modifications observed on skeletal elements from different environmental and chronological contexts, with similar morphologies but varied aetiologies. Two types of classifications, empirical and statistical, were constructed, tested by two independent observers and compared. This classification system aims to categorise, differentiate and identify pathological and taphonomic bone modifications. In this paper, we identify several taphonomic criteria and propose a new term, “taphognomonic”, to characterise criteria that are specific to particular taphonomic agents. The two classification methods complement each other by providing precise (empirical classification) and reliable (statistical classification) diagnostic criteria. Finally, criteria are highlighted to differentiate pseudo-pathological from pathological bone modifications, the ultimate goal being to reduce the risk of misdiagnosis.

Keywords

Palaeopathology Pseudopathology Taphonomy Bone modification Classification Taphognomonic 

Identification d’agents pathologiques et taphonomiques à l’origine de modifications osseuses à l’aide de classifications : existe-t-il des critères dits « taphognomoniques » ?

Résumé

Certains agents pathologiques ou taphonomiques peuvent être à l’origine de modifications osseuses tellement similaires que même un observateur aguerri ne peut les distinguer. Le but de cette étude est de proposer un outil d’identification d’un ensemble de modifications osseuses de morphologies similaires mais d’étiologies différentes, observées sur des éléments provenant d’environnements et de périodes différents. Deux systèmes de classification, empirique et statistique, ont été construits, puis testés et comparés par deux observateurs indépendants. Ces systèmes classent, différencient et identifient desmodifications osseuses d’origine taphonomique ou pathologique. Cette étude a permis d’identifier plusieurs critères taphonomiques et de proposer un nouveau terme, « taphognomonique », pour caractériser des critères spécifiques à certains agents taphonomiques. Les deux types de classification sont complémentaires: ils apportent des critères diagnostiques à la fois précis (classification empirique) et fiables (classification statistique). Enfin, les critères permettant de différencier les modifications pseudopathologiques des modifications d’origine pathologique sont mis en avant, le but ultime étant de réduire le risque d’erreur diagnostique.

Mots clés

Paléopathologie Pseudopathologie Taphonomie Modification osseuse Classification Taphognomonique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13219_2016_176_MOESM1_ESM.pdf (28 kb)
Appendix A: Criteria, descriptors and abbreviations used in the classification system
13219_2016_176_MOESM2_ESM.pdf (215 kb)
Appendix B: Definition and origin of the terms used in the classification systems

References

  1. 1.
    Brothwell DR (1967) The bio-cultural background to disease. In: Brothwell DR, Sandison AT (eds) Diseases in antiquity. A survey of the diseases, injuries and surgery of early populations. CC Thomas, Springfield (Ill), pp 56–68Google Scholar
  2. 2.
    Wells C (1967) Pseudopathology. In: Brothwell DR, Sandison AT (eds) Diseases in antiquity. A survey of the diseases, injuries and surgery of early populations. CC Thomas, Springfield (Ill), pp 5–19Google Scholar
  3. 3.
    Dutour O (2011) La paléopathologie. CTHS, Paris, 170pGoogle Scholar
  4. 4.
    Aufderheide A, Rodriguez-Martin C (1998) The Cambridge encyclopedia of human paleopathology. Cambridge University Press, Cambridge, 478pGoogle Scholar
  5. 5.
    Dastugue J, Gervais V (1992) Paléopathologie du squelette humain. Boubée, Paris, 253pGoogle Scholar
  6. 6.
    Ortner DJ (2003) Identification of pathological conditions in human skeletal remains, 2nd edn. Academic Press, Amsterdam, 645pGoogle Scholar
  7. 7.
    Efremov IA (1940) Taphonomy, a new branch of paleontology. Izvestiya Akademii Nauk S.S.S.R. Leningrad, Biology Series 3:405–13Google Scholar
  8. 8.
    Smith GE (1908) The alleged discovery of syphilis in Prehistoric Egyptians. Lancet 172:521–4CrossRefGoogle Scholar
  9. 9.
    Lortet LCE, Gaillard C (1907) La faune momifiée de l’ancienne Égypte et recherches anthropologiques. 3e série seule. H Georg, Lyon, 104pGoogle Scholar
  10. 10.
    Aubry M, Mafart B, Donat B, et al (2003) Brief communication: Study of noncarious cervical tooth lesions in samples of prehistoric, historic and modern populations from the South of France. Am J Phys Anthropol 120:10–14CrossRefGoogle Scholar
  11. 11.
    Baud C-A (1987) Altérations osseuses post-mortem d’origine fongique ou bactérienne. In: Duday H, Masset C (eds) Anthropologie physique et archéologie: méthodes d’étude des sépultures. Actes du colloque de Toulouse (4–6 novembre 1982). Centre régional de publication de Bordeaux, Ed. CNRS, pp 135–42Google Scholar
  12. 12.
    Wapler U, Crubézy E, Schultz M, et al (2004) Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan. Am J Phys Anthropol 123:333–9CrossRefPubMedGoogle Scholar
  13. 13.
    Maat GJR (1991) Ultrastructure of normal and pathological fossilized red blood cells compared with pseudopathological biological structures. Int J Osteoarchaeol 1:209–14CrossRefGoogle Scholar
  14. 14.
    Maat GJR (1993) Bone preservation, decay and its related conditions in ancient human bones from Kuwait. Int J Osteoarchaeol 3:77–86CrossRefGoogle Scholar
  15. 15.
    McKinley JI, Roberts CA (1993) Excavation and post-excavation treatment of cremated and inhumed human remains. IFA Technical Paper, no 13. Birmingham, 12pGoogle Scholar
  16. 16.
    Pales L (1930) Paléopathologie et pathologie comparative. Masson & Cie, Paris, 352pGoogle Scholar
  17. 17.
    Perry M, Newnam J, Gilliland M, et al (2008) Differential diagnosis of a calcified object from a 4th–5th century AD burial in Aqaba, Jordan. Int J Osteoarchaeol 18:507–22CrossRefGoogle Scholar
  18. 18.
    Cook DC, Patrick RR (2011) As the worm turns: an enigmatic calcified object as pseudo-pathology. Int J Osteoarchaeol. DOI:10.1002/oa.1302Google Scholar
  19. 19.
    Ortlieb L (1979) Cadre géologique (27° au 21° N). In: Petit-Maire N (ed) Le Sahara atlantique à l’Holocène: peuplement et écologie. Mémoire du Centre de recherches anthropologiques, préhistoriques et ethnographiques, XXVIII. Société nationale d’édition et de diffusion, Alger, pp 9–16Google Scholar
  20. 20.
    Petit-Maire N (1986) Paleoclimates in Malian Sahara: a multidisciplinary study. Episodes 9:7–16Google Scholar
  21. 21.
    Dutour O (1989) Hommes fossiles du Sahara: peuplements holocènes du Mali septentrional. Eds CNRS, Paris, 342pGoogle Scholar
  22. 22.
    Saint Pierre C, et al (2010) Fouille programmée, opération trianuelle: La Granède, Millau (12). Rapport complémentaire 201. Responsable d’opération: Saint-Pierre C, Colombo A, Duval A, et al Service départemental d’archéologie de l’Aveyron, vol 2, 367pGoogle Scholar
  23. 23.
    Parkinson AH (2010) An investigation to empirically determine the effect of Trinervitermes trinervoides on faunal remains with the aim of identifying modification criteria. Thesis, University of the Witwatersrand, Johannesbourg, 47pGoogle Scholar
  24. 24.
    Cortet B, Marchandise X (2001) Micro-architecture et résistance mécanique osseuse. Rev Rheumatol 68:584–94Google Scholar
  25. 25.
    Hershkovitz I, Greenwald CM, Latimer B, et al (2002) Serpens Endocrania Symmetrica (SES): a new term and possible clue for identifying intrathoracic disease in skeletal populations. Am J Phys Anthropol 118:201–16CrossRefPubMedGoogle Scholar
  26. 26.
    Schultz M (2001) Paleohistopathology of bone: a new approach to the study of ancient diseases. Am J Phys Anthropol 44:106–47CrossRefGoogle Scholar
  27. 27.
    Thillaud PL (1994) Lésions ostéoarchéologiques: recueil et identification. Kronos BY, Sceaux, 74pGoogle Scholar
  28. 28.
    Thillaud PL (1996) Paléopathologie humaine. Traités pratiques d’Archéologie. Kronos BY, Sceaux, 238pGoogle Scholar
  29. 29.
    Bader KS, Hasiotis ST, Martin LD (2009) Application of forensic science techniques to trace fossils on Dinosaur bones from a quarry in the Upper Jurassic Morrison Formation. Palaios, Northeastern Wyoming, vol 24, pp 140–58Google Scholar
  30. 30.
    Boulestin B (1998) Approche taphonomique des restes humains. Le cas des Mésolithiques de la Grotte des Perrats (Agris, Charente). PhD thesis, Bordeaux-I University, Bordeaux, 2t, 448pGoogle Scholar
  31. 31.
    White EM, Hannus LA (1983) Chemical weathering of bone in archaeological soils. Am Antiquity 48:316–22CrossRefGoogle Scholar
  32. 32.
    Behrensmeyer AK (1978) Taphonomic and ecologic information from bone weathering. Paleobiology 4:150–62CrossRefGoogle Scholar
  33. 33.
    Behrensmeyer AK, Gordon KD, Yanagi GT (1986) Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319:768–71CrossRefGoogle Scholar
  34. 34.
    Brain CK (1967) Bone weathering and the problem of bone pseudo-tools. S Afr J Sci 63:97–9Google Scholar
  35. 35.
    Bromage TG (1984) Interpretation of scanning electron microscopic images of abraded forming bone surfaces. Am J Phys Anthropol 64:161–78CrossRefPubMedGoogle Scholar
  36. 36.
    Haglund DW (1997) Dogs and coyotes: Post-mortem involvement with human remains. In: Haglund DW, Sorg MH (eds) Forensic taphonomy. The post-mortem fate of human remains. CRC Press, Boca Raton, pp 367–81Google Scholar
  37. 37.
    Johnson E (1985) Current developments in bone technology. In: Schiffer MB (ed) Advances in archaeological method and theory. Academic Press, New York, pp 157–235CrossRefGoogle Scholar
  38. 38.
    Quatrehomme G, Iscan MY (1997) Postmortem skeletal lesions. Forensic Sci Int 89:155–65CrossRefPubMedGoogle Scholar
  39. 39.
    Sorg MH, Deaborn DH, Monahan EI, et al (1997) Forensic taphonomy in marine contexts. In: Haglund DW, Sorg MH (eds) Forensic taphonomy. The post-mortem fate of human remains. CRC Press, Boca Raton, pp 567–604Google Scholar
  40. 40.
    Jodelet D (1995) Folies et représentations sociales. Collection: Sociologie d’aujourd’hui. PUF, Paris, 310pGoogle Scholar
  41. 41.
    Janvier P (2012) Cladistique ou systématique du vivant. Encyclopaedia Universalis. http://www.universalis.fr/encyclopedie/cladistique-systematique-phylogenetique/Google Scholar
  42. 42.
    Breiman L, Friedmann J, Olshen R, et al (1984) Classification and regression trees. CRC Press, Boca Raton, 358pGoogle Scholar
  43. 43.
    Thernau TM, Atkinson B (2012) Rpart: Recursive partitioning. R package version 3.1-54. Report by Ripley B. http://CRAN.Rproject. org/package=rpartGoogle Scholar
  44. 44.
    Cohen J (1960) A coefficient of agreement for normal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  45. 45.
    Lovell NC (1997) Trauma analysis in palaeopathology. Yearb Phys Anthropol 40:139–70CrossRefGoogle Scholar
  46. 46.
    Villa P, Mahieu E (1991) Breakage patterns of human long bones. J Hum Evol 21:27–48CrossRefGoogle Scholar
  47. 47.
    Wieberg DAM, Wescott DJ (2008) Estimating the timing of long bone fractures: correlation between the postmortem interval, bone moisture content, and blunt force trauma fracture characteristics. J Forensic Sci 53:1028–34PubMedGoogle Scholar
  48. 48.
    Ubelaker DH (1997) Taphonomic applications in forensic anthropology. In: Haglund DW, Sorg MH (eds) Forensic taphonomy. The postmortem fate of human remains. CRC Press, Boca Raton, pp 77–90Google Scholar
  49. 49.
    Huchet J-B, Le Mort F, Rabinovich R, et al (2013) Identification of dermestid pupal chambers on Southern Levant human bones: inference for reconstruction of Middle Bronze Age mortuary practices. J Archaeol Sci 40:3793–803CrossRefGoogle Scholar
  50. 50.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometry 33:159–74CrossRefGoogle Scholar
  51. 51.
    Tanner L, Schreiber M, Low J, et al (2008) Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis 2–3:e196CrossRefGoogle Scholar
  52. 52.
    Guyomarc’h P, Campagna-Vaillancourt M, Kremer C, et al (2010) Discrimination of falls and blows in blunt head trauma: a multi-criteria approach. J Forensic Sci 55:423–7CrossRefPubMedGoogle Scholar
  53. 53.
    Navega D, Coelho C, Vicente R, et al (2015) AncesTrees: Ancestry estimation with randomized decision trees. Int J Legal Med 129:1145–53CrossRefPubMedGoogle Scholar
  54. 54.
    Strouhal E (1991) Myeloma multiplex versus osteolytic metastatic carcinoma: differential diagnosis in dry bones. Int J Osteoarchaeol 1:219–24CrossRefGoogle Scholar
  55. 55.
    Backwell LR, Parkinsona AH, Roberts EM, et al (2012) Criteria for identifying bone modification by termites in the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 337–8:72–87CrossRefGoogle Scholar
  56. 56.
    Derry DE (1911) Damage done to skulls and bones by termites. Nature 86:245–6CrossRefGoogle Scholar
  57. 57.
    Huchet JB, Deverly D, Gutierrez B, et al (2011) Taphonomic evidence of a Human skeleton gnawed by termites in a Mochecivilisation grave at Huaca de la Luna, Peru. Int J Osteoarchaeol 21:92–102CrossRefGoogle Scholar
  58. 58.
    Thorne BL, Kinsey RB (1983) Attraction of neotropical Nasutitermes termites to carrion. Biotropica 15:295–6CrossRefGoogle Scholar
  59. 59.
    Watson JAL, Abbey HM (1986) The effects of termites (Isoptera) on bone: some archaeological implications. Sociobiology 11:245–54Google Scholar
  60. 60.
    Colombo A, Saint-Pierre C, Coqueugniot H, et al (2011) Un cas d’histiocytose langerhansienne chez un enfant daté de l’Antiquité tardive au Haut Moyen-Âge (Oppidum de La Granède, Millau, Aveyron). Coll. Groupe Paléopathologistes Langue Française (10–11 March 2011). Toulon, FranceGoogle Scholar
  61. 61.
    Azouz AM, Saigal G, Rodriguez MM, et al (2005) Langerhans’ cell histiocytosis: pathology, imaging and treatment of skeletal involvment. Pediatr Radiol 35:103–15CrossRefPubMedGoogle Scholar
  62. 62.
    Freymann BP, de Visser SN, Mayemba EP, et al (2007) Termites of the Genus Odontotermes are optionnally keratophagous. Ecotropica 13:143–7Google Scholar
  63. 63.
    Campillo D (1991) The possibility of diagnosing meningiomas in palaeopathology. Int J Osteoarchaeol 1:225–30CrossRefGoogle Scholar
  64. 64.
    Marks MK, Hamilton MD (2007) Metastatic carcinoma: palaeopathology and differential diagnosis. Int J Osteoarchaeol 17:217–34CrossRefGoogle Scholar
  65. 65.
    Milner GR, Smith VG (1989) Carnivore alteration of human bone from a late prehistoric site in Illinois. Am J Phys Anthrop 79:43–9CrossRefPubMedGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Lavoisier 2016

Authors and Affiliations

  • L. Corron
    • 1
  • J. -B. Huchet
    • 2
    • 3
    • 4
  • F. Santos
    • 2
  • O. Dutour
    • 2
    • 5
    • 6
  1. 1.UMR 7268 ADES, Aix-Marseille université, EFS, CNRS, Faculté de médecine de MarseilleMarseille cedex 15France
  2. 2.CNRS, UMR 5199 PACEA, laboratoire d’anthropologie des populations passées et présentesuniversité de BordeauxPessac cedexFrance
  3. 3.CNRS, UMR 7209, archéozoologie, archéobotanique : sociétés, pratiques et environnementsMuséum national d’Histoire naturelleParisFrance
  4. 4.CNRS, UMR 7205, Institut de systématique, évolution, biodiversité (ISYEB), département systématique et évolution (Entomologie)Muséum national d’Histoire naturelleParisFrance
  5. 5.École pratique des hautes étudeslaboratoire Paul-BrocaParisFrance
  6. 6.Department of AnthropologyUniversity of Western OntarioOntarioCanada

Personalised recommendations