Advertisement

Nouvelles données sur l’édification des molaires et l’estimation de l’âge dentaire des enfants par imagerie médicale et 3D : apports et perspectives

  • A. ColomboEmail author
  • H. Coqueugniot
  • B. Dutailly
  • P. Desbarats
  • A. -m. Tillier
Article / Article

Résumé

Les méthodes d’estimation de l’âge des enfants se fondent sur des référentiels pouvant être biaisés. L’évolution technologique aidant, l’imagerie médicale et 3D peuvent être utilisées pour améliorer ou développer des méthodes moins subjectives. Ces nouvelles approches conduisent également à identifier de nouveaux critères d’estimation de l’âge au décès. Aussi, pour en proposer, il est essentiel de s’appuyer sur un échantillon de référence, dont il faut connaître les caractéristiques et qui offre un aperçu de la variabilité populationnelle. Cette variabilité, comparée à celle des taxons fossiles, permet d’apporter de nouvelles informations sur le développement dentaire de ces derniers et d’approfondir la réflexion sur l’estimation de l’âge des sujets immatures en général et des fossiles en particulier. En effet, à travers cette étude, nous nous proposons de fournir des améliorations méthodologiques aux méthodes de Moorrees et al. 1963a, b et de proposer de nouvelles pistes dans l’estimation de l’âge des enfants grâce à l’imagerie médicale et 3D à travers les volumes dentaires. Une première application de ces propositions à l’enfant néanderthalien Châteauneuf 2 a été effectuée. Elle rend compte de l’importance des critères sélectionnés pour l’estimation de l’âge, produisant des écarts plus importants que pour des enfants modernes. De plus, elle met en avant le développement différentiel des premières molaires permanentes entre les deux arcades dentaires.

Mots clés

Scanners CT Test des méthodes de Moorrees et al. Estimation de l’âge Volumes dentaires Développement dentaire Néanderthalien 

New data on the development and age estimations of molars in children, using medical and 3D imaging: contributions and perspectives

Abstract

Age estimation methods vary considerably and are based on reference frameworks that may be biased. New technologies, including medical and 3D imaging, are contributing to the development of improved and less subjective methods, and can identify new characteristics to support estimations of age at death. The use of a reference sample with known characteristics (origin, age, sex, etc.) is essential to develop new standards for age estimation. Comparing variability within a well characterized sample with the variability of fossil specimens provides new information on dental maturation and further insights for juvenile age estimation. Here, we propose an improvement to the juvenile age estimation methods of Moorrees et al. based on dental volumes derived from medical and 3D imaging. Its initial application to the Châteauneuf 2 Neanderthal child demonstrated the importance of the criteria selected for age estimation, which produced larger differences than in modern children, and brought out differences between the two arches in the rate of maturation of the first permanent molars.

Keywords

CT-scans Test of Moorrees et al. methods Age estimation Teeth volumes Dental maturation Neanderthal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Ubelaker DH (1987) Estimating age at death from immature human skeletons: an overview. J Forensic Sci 32:1254–1263PubMedGoogle Scholar
  2. 2.
    Logan WHG, Kronfeld R (1933) Development of the human jaws and surrounding structures from birth to the age of fifteen years. J Am Dent Asso 20:379–427Google Scholar
  3. 3.
    Lewis AB, Garn SM (1960) The relationship between tooth formation and other maturational factors. Angle Orthod 30:70–77Google Scholar
  4. 4.
    Liversidge HM, Herdeg B, Rösing FW (1998) Dental age estimation of non-adults. A review of methods and principles. In: Springer (ed) Dental anthropology: fundamentals, limits and prospects, pp 419–442Google Scholar
  5. 5.
    Cox M, Mays S (2000) Juvenile health, growth and development. In: Human osteology in archaeology and forensic medicine. London, pp 9–21Google Scholar
  6. 6.
    Bruzek J, Schmitt A, Murail P (2005) Identification biologique individuelle en paléoanthropologie. Détermination du sexe et estimation de l’âge au décès à partir du squelette. In: Dutour O, Hublin JJ, Vandermeersch B (eds) Objets et méthodes en paléoanthropologie. CTHS, Paris, pp 217–246Google Scholar
  7. 7.
    Cardoso HFV (2007) Environmental effects on skeletal versus dental development: using a documented subadult skeletal sample to test a basic assumption in human osteological research. Am J Phys Anthropol 132:223–233PubMedCrossRefGoogle Scholar
  8. 8.
    Hillson S (1996) Sequence of timing of dental growth. In: Press CU (ed) Dental Anthropology, pp 118–146Google Scholar
  9. 9.
    Scheuer JL, Black S (2000) Developmental Juvenile Osteology, Academic Press, San Diego, California, 587 pGoogle Scholar
  10. 10.
    Cattell LP (1928) Dentition as a measure of maturity. Massachusetts Harvard University Press, CambridgeGoogle Scholar
  11. 11.
    Schour I, Massler M (1941) The development of the human dentition. J Am Dent Asso 28:1153–1160Google Scholar
  12. 12.
    Hurme VO (1949) Ranges of normalcy in the eruption of permanent teeth. J Dent Child 16:11–15PubMedGoogle Scholar
  13. 13.
    Ubelaker DH (1978) Human skeletal remains — excavation, analysis, interpretation, Taraxacum. Washington, 172 pGoogle Scholar
  14. 14.
    Hägg U, Taranger J (1985) Dental development, dental age and tooth counts. Angle Ortho 55:93–107Google Scholar
  15. 15.
    Foti B, Lalys L, Adalian P, et al (2003) New forensic approach to age determination in children based on tooth eruption. Forensic Sci Int 132:49–56PubMedCrossRefGoogle Scholar
  16. 16.
    Gleiser I, Hunt EE (1955) The permanent mandibular first molar: its calcification, eruption and decay. Am J Phys Anthropol 13:253–284PubMedCrossRefGoogle Scholar
  17. 17.
    Nolla CM (1960) The development of the permanent tooth. J Dent Child 27:254–266Google Scholar
  18. 18.
    Moorrees CFA, Fanning EA, Hunt EE (1963a) Age variation of formation stages for ten permanent teeth. J Dent Res 42:1490–1502PubMedCrossRefGoogle Scholar
  19. 19.
    Moorrees CFA, Fanning EA, Hunt EE (1963b) Formation and resorption of three deciduous teeth in children. Am J Phys Anthropol 21:205–213PubMedCrossRefGoogle Scholar
  20. 20.
    Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45:211–227PubMedGoogle Scholar
  21. 21.
    Gustafson G, Koch G (1974) Age estimation up to 16 years of age based on dental development. Odontol Rev 25:297–306Google Scholar
  22. 22.
    Demirjian A, Goldstein H (1976) New systems for dental maturity based on seven and four teeth. Ann Hum Biol 3:411–421PubMedCrossRefGoogle Scholar
  23. 23.
    Liversidge HM, Molleson T (2004) Variation in crown and root formation and eruption of human deciduous teeth. Am J Phys Anthropol 123:172–180PubMedCrossRefGoogle Scholar
  24. 24.
    Stack MV (1967) Vertical growth rates of the deciduous teeth. J Dent Res 46:879–882PubMedCrossRefGoogle Scholar
  25. 25.
    Ledley RS, Huang HK, Pence RG (1971) Quantitative study of normal growth and eruption of teeth. Comput Biol Med 1:231–241PubMedCrossRefGoogle Scholar
  26. 26.
    Liversidge HM, Dean MC, Molleson TI (1993) Increasing human tooth length between birth and 5.4 years. Am J Phys Anthropol 90:307–313PubMedCrossRefGoogle Scholar
  27. 27.
    Mörnstad H, Staaf V, Welander U (1994) Age estimation with the aid of tooth development: a new method based on objective measurements. Scand J Dent Res 102:137–143PubMedGoogle Scholar
  28. 28.
    Liversidge HM, Molleson TI (1999) Developing permanent tooth length as an estimate of age. J Forensic Sci 44:917–920PubMedGoogle Scholar
  29. 29.
    Cameriere R, Brkic H, Ermenc B, et al (2008) The measurement of open apices of teeth to test chronological age of over 14-year olds in living subjects. Forensic Sci Int 174:217–221PubMedCrossRefGoogle Scholar
  30. 30.
    Sema AP, Nergis C, Rukiye D, et al (2009) Age determination from central incisors of fetuses and infants. Forensic Sci Int 184:15–20CrossRefGoogle Scholar
  31. 31.
    Franklin D (2010) Forensic age estimation in human skeletal remains: current concepts and future directions. Leg Med 12:1–7CrossRefGoogle Scholar
  32. 32.
    Liversidge HM, Lyons F, Hector MP (2003) The accuracy of three methods of age estimation using radiographic measurements of developing teeth. Forensic Sci Int 131:22–29PubMedCrossRefGoogle Scholar
  33. 33.
    Proy E, Gautier N (1986) Dental maturation in French children and adolescents. Rev Orthop Dento Faciale 20:107–121PubMedCrossRefGoogle Scholar
  34. 34.
    Demirjian A, Levesque GY (1980) Sexual differences in dental developement and prediction of emergence. J Dent Res 59:1110–1122PubMedCrossRefGoogle Scholar
  35. 35.
    Zingeser MR, Phoenix CH (1978) Metric characteristics of the canine dental complex in prenatally androgenized female rhesus monkeys (Macaca mulatta). Am J Physiol 49:187–192Google Scholar
  36. 36.
    Schwartz GT, Dean MC (2005) Sexual dimorphism in modern human permanent teeth. Am J Phys Anthropol 128:312–317PubMedCrossRefGoogle Scholar
  37. 37.
    Saunders SR, Chan AHW, Kahlon B, et al (2007) Sexual dimorphism of the dental tissues in human permanent mandibular canines and third premolars. Am J Phys Anthropol 133:735–740PubMedCrossRefGoogle Scholar
  38. 38.
    Alvesalo L (1997) Sex chromosomes and human growth: a dental approach. Hum Genet 101:1–5PubMedCrossRefGoogle Scholar
  39. 39.
    Angelopoulos C, Thomas S, Hechler S, et al (2008) Comparison between digital panoramic radiography and cone-beam computed tomography for the identification of the mandibular canal as part of presurgical dental implant assessment. J Oral Maxil Surg 66:2130–2135CrossRefGoogle Scholar
  40. 40.
    Larheim TA, Svanaes DB, Johannessen S (1984) Reproducibility of radiographs with the orthopantomography 5: tooth-length assessment. Oral Surg Oral Med O 58:736–741CrossRefGoogle Scholar
  41. 41.
    Tompkins RL (1996) Human population variability in relative dental development. Am J Phys Anthropol 99:79–102PubMedCrossRefGoogle Scholar
  42. 42.
    Nyström M, Haataja J, Kataja M, et al (1986) Dental maturity in Finnish children, estimated from the development of seven permanent mandibular teeth. Acta Odontol Scan 44:193–198CrossRefGoogle Scholar
  43. 43.
    Willems G (2001) A review of the most commonly used dental age estimation techniques. J Forensic Odontostomatol 19:9–17PubMedGoogle Scholar
  44. 44.
    Cameriere R, Flores-Mir C, Mauricio F, et al (2007) Effects of nutrition on timing of mineralization in teeth in a Peruvian sample by the Cameriere and Demirjian methods. Ann Hum Biol 34:547–556PubMedCrossRefGoogle Scholar
  45. 45.
    Qudeimat MA, Behbehani F (2009) Dental age assessment for Kuwaiti children using Demirjian’s method. Ann Hum Biol 36:695–704PubMedCrossRefGoogle Scholar
  46. 46.
    Anderson DL, Popovich F (1977) Dental reduction and dental caries. Am J Phys Anthropol 47:381–386PubMedCrossRefGoogle Scholar
  47. 47.
    Anderson DL, Popovich F (1981) Association of relatively delayed emergence of mandibular molars with molar reduction and molar position. Am J Phys Anthropol 54:369–376PubMedCrossRefGoogle Scholar
  48. 48.
    Harila-Kaera V, Keikkinen T, Alvesalo L, et al (2001) Permanent tooth crown dimensions in prematurely born children. Early Hum Dev 62:131–147PubMedCrossRefGoogle Scholar
  49. 49.
    Triratana T, Hemindra D, Kiatiparjuk C (1990) Eruption of permanent teeth in malnutrition children. J Dent Assoc Thailand 40:100–108Google Scholar
  50. 50.
    Shaw J (1970) Pre-eruptive effects of nutrition on teeth. J Dent Res 49:1238–1250PubMedCrossRefGoogle Scholar
  51. 51.
    Garn SM, Lewis AB, Walenga A (1968) Evidence for a secular trend in tooth size over two generations. J Dent Res 47:503PubMedCrossRefGoogle Scholar
  52. 52.
    Rousset MM, Boualam N, Delfosse C, et al (2003) Emergence of permanent teeth: secular trends and variance in a modern sample. J Dent Child 70:208–214Google Scholar
  53. 53.
    Heuzé Y, Cardoso HFV (2008) Testing the quality of nonadult Bayesian dental age assessment methods to juvenile skeletal remains: the Lisbon collection children and secular trend effects. Am J Phys Anthropol 135:275–283PubMedCrossRefGoogle Scholar
  54. 54.
    Bro-Nielsen M, Larsen P, Kreiborg S (1996) Virtual teeth: a 3D method for editing and visualizing small structures in CT scans. In: Lemkhe HU, Vannier MW, Inamura K, et al (eds) Computer assisted radiology, Elsevier, AmsterdamGoogle Scholar
  55. 55.
    Amano M, Agematsu H, Usami A, et al (2006) Threedimensional analysis of pulp chambers in maxillary second deciduous molars. J Dent 34:503–508PubMedCrossRefGoogle Scholar
  56. 56.
    Bocaege E, Humphrey LT, Hillson S (2010) Technical note: a new three-dimensional technique for high resolution quantitative recording of perikymata. Am J Phys Anthropol 141:498–503PubMedGoogle Scholar
  57. 57.
    Vandevoort FM, Bergmans L, Cleynenbreugel JV, et al (2004) Age calculation using X-ray microfocus computed tomographical scanning of teeth: a pilot study. J Forensic Sci 49:787–790PubMedCrossRefGoogle Scholar
  58. 58.
    Yang F, Jacobs R, Willems G (2006) Dental age estimation through volume matching of teeth imaged by cone-beam CT. Forensic Sci Int 159S:S78–S83CrossRefGoogle Scholar
  59. 59.
    Cameriere R, Ferrante L, Belcastro MG, et al (2007) Age estimation by pulp/tooth ratio in canines by peri-apical X-rays. J Forensic Sci 52:166–170PubMedCrossRefGoogle Scholar
  60. 60.
    Someda H, Saka H, Matsunaga S, et al (2009) Age estimation based on three-dimensional measurement of mandibular central incisors in Japanese. Forensic Sci Int 185:110–114PubMedCrossRefGoogle Scholar
  61. 61.
    Graham JP, O’Donnell CJ, Craig PJG, et al (2010) The application of computerized tomography (CT) to the dental ageing of children and adolescents. Forensic Sci Int 195:58–62PubMedCrossRefGoogle Scholar
  62. 62.
    Rampont M (1994) Les squelettes, os et dents de foetus, nouveaunés et enfants du musée anatomique de Strasbourg. Aspects historiques et catalogue. Université Louis-Pasteur, Strasbourg, 170 pGoogle Scholar
  63. 63.
    Thorson J, Hägg U (1991) The accuracy and precision of the third mandibular molar as an indicator of chronological age. Swed Dent J 15:15–22PubMedGoogle Scholar
  64. 64.
    Spoor CF, Zonneveld FW, Macho GA (1993) Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol 91:469–484PubMedCrossRefGoogle Scholar
  65. 65.
    Dutailly B, Coqueugniot H, Desbarats P, et al (2009) 3D surface reconstructing using HMH algorithm. Proceedings International Conference on Image Processing, ICIP, art. no 5413911, pp 2505–2508Google Scholar
  66. 66.
    Leatherman G (1971) Two-digit system of designating teeth: FDI submission. Aust Dent J 16:394CrossRefGoogle Scholar
  67. 67.
    Guyomarc’h P, Santos F, Dutailly B, et al (2012) Threedimensional computer-assisted craniometrics: a comparison of the uncertainty in measurement induced by surface reconstruction performed by two computer programs. Forensic Sci Int 219:221–227PubMedCrossRefGoogle Scholar
  68. 68.
    Daudin JJ, Robin S, Vuillet C (2001) Statistique inférentielle: idées, démarches, exemples. Presses Universitaires de Rennes, Rennes, 185 pGoogle Scholar
  69. 69.
    Tomassonne R, Dervin C, Masson JP (1993) Biométrie: modélisation de phénomènes biologiques, Masson, Paris, 553 pGoogle Scholar
  70. 70.
    Cornillon PA, Matzner-Lober E (2007) Régression: théorie et applications. Springer, Paris, 303 pGoogle Scholar
  71. 71.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  72. 72.
    I-Kuei Lin L (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRefGoogle Scholar
  73. 73.
    Tillier AM (1979) La dentition de l’enfant moustérien Châteauneuf 2 découvert à l’abri de Hauteroche (Charente). L’Anthropologie 83:417–438Google Scholar
  74. 74.
    Fanning EA (1961) A longitudinal study of tooth formation and resorption. New Zeal Dent J 57:202–217Google Scholar
  75. 75.
    Borrman H, Solheim T, Magnusson B, et al (1995) Interexaminer variation in the assessment of age-related factors in teeth. Int J Leg Med 107:183–186CrossRefGoogle Scholar
  76. 76.
    Willems G, Moulin-Romsee C, Solheim T (2002) Nondestructive dental-age calculation methods in adults: intra- and inter-observer effects. Forensic Sci Int 126:221–226PubMedCrossRefGoogle Scholar
  77. 77.
    Saunders S, Devito C, Herring A, et al (1993) Accuracy tests of tooth formation age estimations for human skeletal remains. Am J Phys Anthropol 92:173–188PubMedCrossRefGoogle Scholar
  78. 78.
    Maber M, Liversidge HM, Hector MP (2006) Accuracy of age estimation of radiographic methods using developing teeth. Forensic Sci Int 159(Suppl 1):S68–S73PubMedCrossRefGoogle Scholar
  79. 79.
    Stroud JL, Buschang PH, Goaz PW (1994) Sexual dimorphism in mesiodistal dentin and enamel thickness. Dentomaxillofac Rad 23:169–171Google Scholar
  80. 80.
    Stroud JL, English J, Buschang PH (1998) Enamel thickness of the posterior dentition: its implications for nonextraction treatment. Angle Orthod 68:141–146PubMedGoogle Scholar
  81. 81.
    Kvaal SI, Kollveit KM, Thomsen IO, et al (1995) Age estimation of adults from dental radiographs. Forensic Sci Int 74:175–185PubMedCrossRefGoogle Scholar
  82. 82.
    Bayle P, Braga J, Mazurier A, et al (2009) Dental developmental pattern of the Neanderthal child from Roc de Marsal: a highresolution 3D analysis. J Hum Evol 56:66–75PubMedCrossRefGoogle Scholar
  83. 83.
    Smith TM, Tafforeau P, Reid DJ, et al (2010) Dental evidence for ontogenetic differences between modern humans and Neanderthals. P Natl Aca Sci USA 107:20923–20928CrossRefGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2012

Authors and Affiliations

  • A. Colombo
    • 1
    Email author
  • H. Coqueugniot
    • 1
    • 2
  • B. Dutailly
    • 1
    • 3
  • P. Desbarats
    • 4
  • A. -m. Tillier
    • 1
  1. 1.UMR 5199 PACEA, A3P (anthropologie des populations passées et présentes)université Bordeaux-ITalence cedexFrance
  2. 2.Associate Scientist, Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  3. 3.UMR 5607 Ausoniusuniversité Bordeaux-IIIBordeauxFrance
  4. 4.UMR 5800 LaBRIuniversité Bordeaux-IBordeauxFrance

Personalised recommendations