Red cell polymorphisms and malaria: an evolutionary approach

Article / Article

Abstract

Natural selection has made infectious agents a powerful driver of genome modification throughout human evolution. Malaria, a major killer in human societies, is one of the best examples to illustrate this phenomenon. The parasite (Plasmodium) is transmitted to humans through the bites of mosquitoes of the genus Anopheles and develops its deleterious effects by infecting red blood cells (erythrocytes). Plasmodium parasites date back to the dawn of mammalian evolution and P. falciparum, which causes the most severe form of malaria in humans, has a common evolutionary history with Homo sapiens. It has been suggested that malaria really became established with the change from hunter-gatherer to sedentary agricultural lifestyles about 10000 years ago. Micro- and macroepidemiological surveys have shown that the geographical distributions of falciparum malaria and of some genetic red cell disorders such as thalassemias, hemoglobinopathies (Hb S, Hb C and Hb E), metabolic disorders (especially G6PD deficiency) and some abnormalities in membrane proteins largely overlap. These erythrocyte-associated mutations have increased in frequency because of the protection they offer against death from malaria, as demonstrated by in vitro models and/or clinical studies. They seem to be regionally specific and of recent origin, and are useful tools for population genetics, particularly for reconstructing the history of migrations. Furthermore, exposure to malaria has produced remarkable genetic variation which is by no means restricted to these red cell polymorphisms.

Keywords

Malaria Plasmodium falciparum Red blood cells Natural selection 

Polymorphismes du globule rouge et paludisme : une approche évolutive

Résumé

Par le biais de la sélection naturelle, les agents infectieux constituent une force essentielle agissant dans la modification du génome tout au long de l’évolution humaine. Le paludisme, cause majeure de mortalité pour l’humanité, représente l’un des meilleurs exemples illustrant ce phénomène. Le parasite (Plasmodium) est transmis aux êtres humains par la piqûre de moustiques du genre Anopheles et développe son pouvoir pathogène au niveau des globules rouges. Les Plasmodium sont apparus dès les débuts de la lignée des mammifères et l’espèce falciparum, agent causal de la forme la plus sévère de paludisme, partage une histoire évolutive commune avec Homo sapiens. Il est supposé que le paludisme s’est réellement installé lors des changements d’habitud de vie correspondant au passage de la chasse et de la cueillette vers les pratiques agricoles et la sédentarisation il y a environ 10000 ans. Les études microet macroépidemiologiques ont montré l’existence d’un chevauchement entre les distributions géographiques du paludisme à falciparum et de certains désordres génétiques du globule rouge tels que les thalassémies, les hémoglobinopathies (Hb S, Hb C and Hb E), des perturbations métaboliques (en particulier le déficit en G6PD) ou des anomalies de protéines membranaires. Ces mutations associées au globule rouge ont gagné en fréquence du fait de l’avantage en survie en cas de paludisme comme démontré à la fois dans des modèles in vitro et/ou des études cliniques. Elles semblent être apparues récemment, avoir une spécificité géographique et constituent des outils précieux en génétique des populations pour reconstruire l’histoire des migrations. En outre, l’importante variabilité génétique reliée à l’exposition des populations au paludisme est loin d’être limitée aux polymorphismes du seul globule rouge.

Mots clés

Paludisme Plasmodium falciparum Globules rouges Sélection naturelle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton University Press, PrincetonGoogle Scholar
  2. 2.
    Bauduer F (2010) Hematology: a major discipline within the history of biological anthropology and population genetics. Bull Mem Soc Anthropol Paris 22:55–61Google Scholar
  3. 3.
    Roberts DJ, Harris T, Williams T (2004) The influence of inherited traits on malaria selection. In: Bellamy RJ ed. Susceptibility to infectious diseases: the importance of host genetics. Cambridge University Press, Cambridge, pp 139–184Google Scholar
  4. 4.
    Haldane JBS (1949) The rate of mutation of human genes. Hereditas 35:267–273Google Scholar
  5. 5.
    Duval L, Fourment M, Nerrienet E, et al (2010) African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the laverania subgenus. Proc Natl Acad Sci USA 107:10561–10566PubMedGoogle Scholar
  6. 6.
    Krief S, Escalante AA, Pacheco MA, et al (2010) On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from bonobos. PLoS Pathog 6:e1000765PubMedGoogle Scholar
  7. 7.
    Liu W, Li Y, Learn GH, et al (2010) Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467:420–425PubMedGoogle Scholar
  8. 8.
    Singh B, Kim Sung L, Matusop A, et al (2004) A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363:1017–1024PubMedGoogle Scholar
  9. 9.
    Kantele A, Jorikanta TS (2011) Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi. Clin Infect Dis 52:1356–1362PubMedGoogle Scholar
  10. 10.
    Tuteja R (2007) Malaria — an overview. FEBS J 274: 4670–4679PubMedGoogle Scholar
  11. 11.
    Rowe A, Obeiro J, Newbold C, Marsh K (1995) Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect Immun 63: 2323–2326PubMedGoogle Scholar
  12. 12.
    Snow RW, Guerra CA, Noor AM, et al (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217PubMedGoogle Scholar
  13. 13.
    World Health Organization (2011) World Malaria Report. GenevaGoogle Scholar
  14. 14.
    Rich SM, Ayala FJ (2006) Evolutionary origins of human malaria parasites. In: Dronamraju KR, Arese P eds. Malaria: genetic and evolutionary aspects. Springer, New York.Google Scholar
  15. 15.
    Das A, Bajaj R, Mohanty S, Swain V (2007) Genetic diversity and evolutionary history of Plasmodium falciparum and P. vivax. Curr Sci 92:1516–1524Google Scholar
  16. 16.
    Joy DA, Feng XR, Mu JB, et al (2003) Early origin and recent expansion of Plasmodium falciparum. Science 300:318–321PubMedGoogle Scholar
  17. 17.
    Conway DJ (2000) Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Mol Biochem Parasitol 111: 163–171PubMedGoogle Scholar
  18. 18.
    Volkman SK, Barry AE, Lyons EJ, et al (2001) Recent origin of Plasmodium falciparum from a single progenitor. Science 293:482–484PubMedGoogle Scholar
  19. 19.
    de Zulueta J (1994) Malaria and ecosystems: from prehistory to posteradication. Parassitologia 36:7–15PubMedGoogle Scholar
  20. 20.
    Grmek M (1994) Les maladies à l’aube de la civilisation occidentale. Payot, ParisGoogle Scholar
  21. 21.
    Carter R, Mendis KN (2002) Evolutionary and historical aspects of the burden of malaria. Clin Microbiol Rev 15:564–594PubMedGoogle Scholar
  22. 22.
    Hume JCC, Lyons EJ, Day KP (2003) Human migration, mosquitoes and the evolution of Plasmodium falciparum. Trends Parasitol 19:144–149PubMedGoogle Scholar
  23. 23.
    Flint J, Harding RM, Boyce AJ, Clegg JB (1998) The population genetics of the haemoglobinopathies. Bailleres Clin Haematol 11:1–51Google Scholar
  24. 24.
    Hughes AL, Verra F. 2010. Malaria parasite sequences from chimpanzee support the co-speciation hypotheses for the origin of virulent human malaria (Plasmodium falciparum). Mol Phylogenet Evol 57:135–143PubMedGoogle Scholar
  25. 25.
    Rich SM, Leendertz FH, Xu G, et al (2009) The origin of malignant malaria. Proc Natl Acad Sci USA 106:14902–14907PubMedGoogle Scholar
  26. 26.
    Bauduer F (2005) Diseases and therapies in Ancient Egypt: what mummies and other human remains teach us? J Biol Res 80:69–72Google Scholar
  27. 27.
    Nerlich A, Schraut B, Dittrich S, et al (2008) Plasmodium falciparum in Ancien Egypt. Emerging Infect Dis 14:1317–1319PubMedGoogle Scholar
  28. 28.
    Hawass Z, Gad YZ, Ismail S, et al (2010) Ancestry and pathology in King Tutankhamun’s family. JAMA 303: 638–647PubMedGoogle Scholar
  29. 29.
    Hay SI, Guerra CA, Tatern AJ, et al (2004) The global distribution and population risk of malaria: past, present and future. Lancet Infect Dis 4:327–336PubMedGoogle Scholar
  30. 30.
    Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 77:171–192PubMedGoogle Scholar
  31. 31.
    Miller LH (1996) Malaria protective selective pressure. Nature 383:480–481PubMedGoogle Scholar
  32. 32.
    Bittles AH, Mason WM, Greene J, Rao NA (1991) Reproductive behavior and health in consanguineous marriages. Science 252:789–794PubMedGoogle Scholar
  33. 33.
    Livingstone FB (1985) Frequencies of haemoglobin variants. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Allen SJ, O’Donnell A, Alexander ND, et al (1997) Alpha + thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci USA 94:14736–14741PubMedGoogle Scholar
  35. 35.
    Mockenhaupt FP, Ehrhardt S, Gellert S, et al (2004) Alpha (+) thalassemia protects African children from severe malaria. Blood 104:2003–2006PubMedGoogle Scholar
  36. 36.
    Williams TN, Wambua S, Uyoga S, et al (2005) Both heterozygous and homozygous alpha + thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 106:368–371PubMedGoogle Scholar
  37. 37.
    Wambua S, Mwangi TW, Kortok M, et al (2006) The effect of alpha + thalassemia on the incidence of malaria and other diseases in children living on the coast of Kenya. PLoS Med 3: e158PubMedGoogle Scholar
  38. 38.
    May J, Evans JA, Timmann C, et al (2007) Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA 297: 2220–2226PubMedGoogle Scholar
  39. 39.
    Cockburn IA, Mc Kinnon MJ, O’Donnell A, et al (2004) A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad USA 101:272–277Google Scholar
  40. 40.
    Fowkes FJ, Allen SJ, Allen A, et al (2008) Increased microerythrocyte count in homozygous alpha (+) thalassemia contributes to protection against severe malarial anaemia. PLoS Med 18: e56Google Scholar
  41. 41.
    Modiano G, Morpurgo G, Terrenato L, et al (1991) Protection against malaria morbidity: near-fixation of the α-thalassemia gene in a Nepalese population. Am J Hum Genet 48:390–397PubMedGoogle Scholar
  42. 42.
    O’shaughnessy DF, Hill AVS, Bowden DK, et al (1990) Globin genes in Micronesia: origins and affinities of Pacific Islands peoples. Am J Hum Genet 46:144–155PubMedGoogle Scholar
  43. 43.
    Rund D, Cohen T, Filson D, et al (1991) Evolution of a genetic disease in an ethnic isolate: β-thalassemia in the Jews of Kurdistan. Proc Natl Acad Sci USA 88:310–314PubMedGoogle Scholar
  44. 44.
    Nagel RL, Steinberg MH (2001) Genetics of the s gene: origins, genetic epidemiology, and epistasis in sickle cell anemia. In: Steinberg MH, Forget BG, Higgs DR, et al Eds. Disorders of hemoglobin: genetics, pathophysiology, clinical management. Cambridge University Press, CambridgeGoogle Scholar
  45. 45.
    Currat M, Trabuchet G, Rees D, et al (2002) Molecular analysis of the β-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the β.S Senegal mutation. Am J Hum Genet 70:207–223PubMedGoogle Scholar
  46. 46.
    Labie D, Srinivas R, Dunda O, et al (1989) Haplotypes in tribal Indians bearing the sickle gene: evidence for the unicentric origin of the βS mutation and the unicentric origin of the tribal populations in India. Hum Biol 61:479–491PubMedGoogle Scholar
  47. 47.
    Allison AC (1954) Protection afforded by sickle cell trait against subtertian malarian infection. Br Med J 1:290–294PubMedGoogle Scholar
  48. 48.
    Hill AV, Allsopp CEM, Kwiatkowski D, et al (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600PubMedGoogle Scholar
  49. 49.
    Piel FB, Patil AP, Howes RE, et al (2010) Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun 1:104 doi 10.1038PubMedGoogle Scholar
  50. 50.
    Luzzatto L, Nwachiku-Jarrett ES, Reddy S (1970) Increased cycling of parasitized erythrocytes as mechanism of resistance against malaria in the sickle-cell trait. Lancet i:319Google Scholar
  51. 51.
    Pasvol G, Weatherall DJ, Wilson RJ (1978) A mechanism for the protective effect of haemoglobin S against P. falciparum. Nature 274:701–703PubMedGoogle Scholar
  52. 52.
    Cabrera G, Cot M, Migot-Nabias F, et al (2005) The sickle cell trait is associated with enhanced immunoglobulin G antibody responses to Plasmodium falciparum variant surface antigens. J Infect Dis 191:1631–1638PubMedGoogle Scholar
  53. 53.
    Williams TN (2006) Red blood cell defects and malaria. Mol Bioch Parasitol 149:121–127Google Scholar
  54. 54.
    Fairhurst RM, Baruch DI, Brittain NJ, et al (2005) Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature 435: 1117–1121PubMedGoogle Scholar
  55. 55.
    Maier AG, Cooke BM, Cowman AF, Tilley L (2009) Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 7:341–354PubMedGoogle Scholar
  56. 56.
    Bull PC, Marsh K (2002) The role of antibodies to Plasmodium falciparum-infected erythrocyte surface antigens in naturally acquired immunity to malaria. Trends Microbiol 10:55–58PubMedGoogle Scholar
  57. 57.
    Agarwal A, Guindo A, Cissoko Y, et al (2000) Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood 96: 2358–2363PubMedGoogle Scholar
  58. 58.
    Modiano D, Luoni G, Sirima BS, et al (2001) Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature 414:305–308PubMedGoogle Scholar
  59. 59.
    Mockenhaupt FP, Ehrhardt S, Cramer JP, et al (2004) Hemoglobin C and resistance to severe malaria in Ghanaian children. J Infect Dis 190:1006–1009PubMedGoogle Scholar
  60. 60.
    Ohashi J, Naka I, Patarapotikul J, et al (2004) Extended linkage disequilibrium surrounding the hemoglobin E variant due to malarial selection. Am J Hum Genet 74:1198–1208PubMedGoogle Scholar
  61. 61.
    Chotivanich K, Udomsanpetch R, Pattanapanyasat K, et al (2002) Hemoglobin E: a balanced polymorphism protective against high parasitemias and this severe P. falciparum malaria. Blood 100:1172–1176PubMedGoogle Scholar
  62. 62.
    Ganczakowski M, Town M, Bowden DK, et al (1995) Multiple glucose 6-phosphate dehydrogenase-deficient variants correlate with malaria endemicity in the Vanuatu archipelago (Southwestern Pacific). Am J Hum Genet 56:294–301PubMedGoogle Scholar
  63. 63.
    Luzzatto L, Usanga EA, Reddy S (1969) Glucose 6-phosphate dehydrogenase deficient red cells resistance to infection by malarial parasite. Science 164:839–842PubMedGoogle Scholar
  64. 64.
    Ruwende C, Khoo SC, Snow RW, et al (2002) Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376:246–249Google Scholar
  65. 65.
    Tishkoff SA, Varkonyi R, Cahinhinan N, et al (2001) Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293:455–462PubMedGoogle Scholar
  66. 66.
    Ayi K, Min-Oo G, Serghides L, et al (2008) Pyruvate kinase deficiency and malaria. N Engl J Med 358:1805–1810PubMedGoogle Scholar
  67. 67.
    Min-Oo G, Fortin A, Tam M, et al (2003) Pyruvate kinase deficiency in mice protects against malaria. Nat Genet 35:357–362PubMedGoogle Scholar
  68. 68.
    Allen SJ, O’Donnell A, Alexander ND, et al (1999) Prevention of cerebral malaria in children in Papua New Guinea by Southeast Asian ovalocytosis. Am J Trop Med Hyg 60:1056–1060PubMedGoogle Scholar
  69. 69.
    Cortes A, Mellombo M, Mgone CS, et al (2005) Adhesion of Plasmodium falciparum-infected red cells to CD36 under flow is enhanced by the cerebral malaria-protective trait South-East Asian ovalocytosis. Mol Biochem Parasitol 142:252–257PubMedGoogle Scholar
  70. 70.
    Howes RE, Patil AP, Piel FB, et al (2011) The global distribution of the Duffy blood group. Nat Commun 2:266 doi 10.1038PubMedGoogle Scholar
  71. 71.
    Tournamille C, Colin Y, Cartron JP, Le Van Kim C (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 10:224–228PubMedGoogle Scholar
  72. 72.
    Miller LH, Mason SJ, Clyde DF, McGiniss MH (1976) The resistance factor to Plasmodium vivax in Blacks. N Engl J Med 295:302–304PubMedGoogle Scholar
  73. 73.
    Zimmerman PA, Woolley I, Masinde GL, et al (1999) Emergence of FY*A (null) in a Plasmodium vivax-endemic region of Papua New Guinea. Proc Natl Acad Sci USA 96:13973–13977PubMedGoogle Scholar
  74. 74.
    Hamblin M, Thompson EE, di Rienzo A (2002) Complex signatures of natural selection at the Duffy blood group locus. Am J Hum Genet 70:369–383PubMedGoogle Scholar
  75. 75.
    Ryan JR, Stoute JA, Amon J, et al (2006) Evidence for transmission of Plasmodium vivax among a Duffy antigen negative population in Western Kenya. Am J Trop Med Hyg 75:575–581PubMedGoogle Scholar
  76. 76.
    Menard D, Barnadas C, Bouchier C, et al (2010) Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107:5967–5971PubMedGoogle Scholar
  77. 77.
    Cserti CM, Dzik WH (2007) The ABO blood group system and Plasmodium falciparum malaria. Blood 110:2250–2258PubMedGoogle Scholar
  78. 78.
    Roubinet F, Despiau S, Calafell F, et al (2004) Evolution of the O alleles of the human ABO blood group gene. Transfusion 44:707–715PubMedGoogle Scholar
  79. 79.
    Fisher PR, Boone P (1998) Severe malaria associated with blood group. Am J Trop Med Hyg 58:122–123Google Scholar
  80. 80.
    Lell B, May J, Schmitt-Ott RJ, et al (1999) The role of red blood cell polymorphisms in resistance and susceptibility to malaria. Clin Infect Dis 28:794–799PubMedGoogle Scholar
  81. 81.
    Pathirana SL, Alles HK, Banadara S, et al (2005) ABO blood group types and protection against severe Plasmodium falciparum malaria. Ann Trop Med Parasitol 99:119–124PubMedGoogle Scholar
  82. 82.
    Loscertales MP, Brabin BJ (2006) ABO phenotypes and malaria related outcomes in mothers and babies in Gambia: a role for histo-blood groups in placental malaria? Malaria J 5:1–6Google Scholar
  83. 83.
    Carlson J, Wahlgren M (1992) Plasmodium falciparum erythrocyte resetting is mediated by promiscuous lectin-like interactions. J Exp Med 176:1311–1317PubMedGoogle Scholar
  84. 84.
    Udomsangpetch R, Todd J, Carlson J, Greenwood BM (1993) The effects of hemoglobin genotype and ABO blood group on the formation of rosettes by Plasmodium falciparum-infected red blood cells. Am J Trop Med Hyg 48:149–153PubMedGoogle Scholar
  85. 85.
    Barragan A, Kremsner PG, Wahlgren M, Carlson J (2000) Blood group A antigen is a coreceptor in Plasmodium falciparum resetting. Infect Immun 68:2971–2975PubMedGoogle Scholar
  86. 86.
    Ko WY, Kaercher KA, Giombini E, et al (2011) Effects of natural selection and gene conversion on the evolution of human glycophorins coding for MNS blood polymorphisms in malariaendemic African populations. Am J Hum Genet 88:741–754PubMedGoogle Scholar
  87. 87.
    Field SP, Hempelmann E, Mendelow BV, et al (1994) Glycophorin variants and Plasmodium falciparum: protective effect of the Dantu phenotype in vitro. Hum Genet 93:148–150PubMedGoogle Scholar
  88. 88.
    Mayer DCG, Cofie J, Jiang L, et al (2009) Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocytebinding ligand, EBL 1. Proc Natl Acad Sci USA 106:5348–5352PubMedGoogle Scholar
  89. 89.
    Maier AG, Duraisingh MT, Reeder JC, et al (2003) Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 9 87–92PubMedGoogle Scholar
  90. 90.
    Patel SS, King CL, Mgone CS, et al (2004) Glycophorin C (Gerbich antigen blood group) and band 3 polymorphisms in two malaria holoendemic regions of Papua New Guinea. Am J Hematol 75:1–5PubMedGoogle Scholar
  91. 91.
    Thomas BN, Donvito B, Cockburn I, et al (2005) A complement receptor-1 polymorphism with high frequency in malaria endemic regions of Asia but not Africa. Genes Immun 6:31–36PubMedGoogle Scholar
  92. 92.
    Moulds JM, Kassambara L, Middleton JJ, et al (2000) Identification of complement receptor one (CR1) polymorphisms in West Africa. Genes Immun 1:325–329PubMedGoogle Scholar
  93. 93.
    Williams TN, Mwangi TW, Wambua S, et al (2005) Negative epistasis between the malaria-protective effects of α+-thalassemia and the sickle cell trait. Nat Genet 37:1253–1257PubMedGoogle Scholar
  94. 94.
    Penman BS, Pybus OG, Weatherall DJ, Gupta S (2009) Epistatic interactions between genetic disorders of hemoglobin can explain why the sickle-cell gene is uncommon in the Mediterranean. Proc Natl Acad Sci USA 106: 21242–21246PubMedGoogle Scholar
  95. 95.
    Ghosh K (2008) Evolution and selection of human leukocyte antigen alleles by Plasmodium falciparum infection. Hum Immunol 69:856–860PubMedGoogle Scholar
  96. 96.
    Mc Guire W, Hill AVS, Allsopp CEM, et al (1994) Variation in the TNFα promoter region is associated with susceptibility to cerebral malaria. Nature 371:508–511Google Scholar
  97. 97.
    Knight JC, Udalova J, Hill AVS, et al (1999) A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet 22:145–150PubMedGoogle Scholar
  98. 98.
    Aitman TJ, Cooper LD, Norsworthy PJ, et al (2000) Malaria susceptibility and CD36 mutation. Nature 405:1015–1016PubMedGoogle Scholar
  99. 99.
    Fernandez-Reyes D, Craig AG, Kyes SA, et al (1997) A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum Mol Genet 6:1357–1360PubMedGoogle Scholar
  100. 100.
    Kun JF, Mordmuller B, Lell B, et al (1998) Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet 351:265–266PubMedGoogle Scholar
  101. 101.
    Modiano D, Luoni G, Sirima BS, et al (2001) The lower susceptibility to Plasmodium falciparum malaria.of Fulani of Burkina Faso (West Africa) is associated with low frequencies of classic malaria-resistance genes. Trans R Soc Trop Med Hyg 95:149–152Google Scholar
  102. 102.
    Weatherall DJ (2008) Genetic variation and susceptibility to infection: the red cell and malaria. Br J Haematol 141:276–286PubMedGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2012

Authors and Affiliations

  1. 1.Laboratoire de Génétique humaine « Maladies rares, génétique et métabolisme », EA 4576, Université Bordeaux Segalen, Bordeaux & Service d’HématologieCentre hospitalier de la Côte basqueBayonneFrance

Personalised recommendations