Direct radiocarbon dates for the Mid Upper Paleolithic (eastern Gravettian) burials from Sunghir, Russia

Article / Article

Abstract

New direct AMS radiocarbon dates of the Sunghir 1 and 3 partial skeletons from the Mid Upper Paleolithic (eastern Gravettian) burials, using ultrafiltration sample preparation, provide ages of 27,050 ± 210 (KIA-27006) and 26,000 ± 410 (KIA-27007) 14C BP. These dates place the two most elaborate Paleolithic burials known within the range of dates for the Mid Upper Paleolithic (eastern Gravettian) archeological levels of the Sunghir site. These determinations confirm earlier dates of the Sunghir 2 and 3 burial, but they are the first ones dating the culturally similar Sunghir 1 burial of the same age. These ages fall within the age range of other earlier Gravettian “red ochre” burials in central and western Europe and reinforce the widespread pattern of internments during this time period in Europe. In addition, the radiocarbon dating provides carbon and nitrogen stable isotope data, along with those from associated faunal remains, confirming the high trophic level of these Mid Upper Paleolithic individuals.

Keywords

Europe Burial Gravettian Stable Isotopes Carbon Nitrogen 

Datations directes par radiocarbone des sépultures du Gravettien d’Europe de l’Est à Sunghir, Russie

Résumé

De nouvelles datations absolues (méthode C14 avec ultrafiltration du collagène) directes des squelettes partiels de Sunghir 1 et 3 (Gravettien d’Europe de l’Est) nous donnent les résultats de 27 050 ± 210 BP (KIA-27006) et 26 000 ± 410 BP (KIA-27007). Ces derniers placent donc les deux sépultures les plus élaborées du Paléolithique au sein de l’intervalle de variation des dates obtenues pour les niveaux archéologiques de ce site du Gravettien d’Europe de l’Est. Si elles confirment celles précédemment obtenues sur les sépultures de Sunghir 2 et 3, elles sont les premières nous assurant que la sépulture de Sunghir 1, rapportée au même ensemble culturel, se situe au sein de la même période chronologique. Elles tombent aussi dans l’intervalle de variation des autres sépultures « ocrées » du début du Gravettien en Europe de l’Ouest et en Europe centrale et complètent donc nos connaissances sur la forme de ces sépultures de cette période. Enfin, les analyses menées pour obtenir ces datations nous permettent de connaître les données concernant les isotopes stables du Carbone et de l’Azote des deux fossiles. Elles confirment la position élevée dans la chaîne trophique des deux spécimens.

Mots clés

Europe Sépulture Gravettien Isotopes stables Carbone Azote 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Formicola V (2007) From the Sunghir children to the Romito dwarf. Aspects of the Upper Paleolithic funerary landscape. Curr Anthropol 48:446–453CrossRefGoogle Scholar
  2. 2.
    Zilhão J, Trinkaus E (2002) Social implications. In: Zilhão J, Trinkaus E (eds) Portrait of the Artist as a Child. The Gravettian Human Skeleton from the Abrigo do Lagar Velho and its Archeological Context. Trabalhos de Arqueologia 22:519–541Google Scholar
  3. 3.
    Knecht H, Pike-Tay A, White R (eds) (1993) Before Lascaux, CRC Press, Boca Raton, 304 pGoogle Scholar
  4. 4.
    Roebroeks W, Mussi M, Svoboda J, et al (eds) (2000) Hunters of the Golden Age, University of Leiden Press, Leiden, 410 pGoogle Scholar
  5. 5.
    Norton CJ, Gao X (2008) Zhoukoudian Upper Cave revisited. Curr Anthropol 49:732–745CrossRefGoogle Scholar
  6. 6.
    Vermeersch PM (2002) Two Upper Palaeolithic burials at Nazlet Khater. In: Vermeersch PM (ed) Palaeolithic Quarrying Sites in Upper and Middle Egypt. Leuven University Press, Leuven, pp 273–282Google Scholar
  7. 7.
    Shang H, Trinkaus E (2010) The Early Modern Human from Tianyuan Cave, China, Texas A&M University Press, College Station TX, 245 pGoogle Scholar
  8. 8.
    Mallegni F (1992) Squelette de femme d’une sépulture des couches gravetiennes de la Grotta Paglicci près de Rignano Garganico (Pouilles, Italie): Paglicci 25. Riv Antropol 70:209–216Google Scholar
  9. 9.
    Vacca E, Coppola D (1993) The Upper Paleolithic burials at the cave of Santa Maria di Agnano (Ostuni, Brindisi): preliminary report. Riv Antropol 71:275–284Google Scholar
  10. 10.
    Pettitt PB, Bader NO (2000) Direct AMS radiocarbon dates for the Sungir mid Upper Palaeolithic burials. Antiquity 74:269–270Google Scholar
  11. 11.
    Sulerzhitski LD, Pettitt PB, Bader NO (2000) Radiocarbon dates of the remains from the settlement Sunghir (in Russian with English summary). In: Alexeeva TI, Bader NO, Munchaev RM, et al (eds) Homo sungirensis. Upper Palaeolithic Man: ecological and evolutionary aspects of the investigation. Scientific World, Moscow, pp 30–34Google Scholar
  12. 12.
    Pettitt PB, Trinkaus E (2000) Direct radiocarbon dating of the Brno 2 Gravettian human remains. Anthropol (Brno) 38:149–150Google Scholar
  13. 13.
    Aujoulat N, Geneste JM, Archambeau C, et al (2002) La grotte ornée de Cussac — Le Buisson-de-Cadouin (Dordogne): premières observations. Bull Soc Prehist Fr 99:129–137Google Scholar
  14. 14.
    Henry-Gambier D (2002) Les fossiles de Cro-Magnon (Les Eyzies-de-Tayac, Dordogne): nouvelles données sur leur position chronologique et leur attribution culturelle. Bull Mem Soc Anthropol Paris 14:89–112Google Scholar
  15. 15.
    Pettitt PB, van der Plicht H, Ramsey CR, et al (2002) The radiocarbon chronology. In: Zilhão J, Trinkaus E (eds) Portrait of the Artist as a Child. The Gravettian Human Skeleton from the Abrigo do Lagar Velho and its Archeological Context. Trabalhos de Arqueologia 22:132–138Google Scholar
  16. 16.
    Formicola V, Pettitt PB, del Lucchese A (2004) A direct AMS radiocarbon date on the Barma Grande 6 Upper Paleolithic skeleton. Curr Anthropol 45:114–118CrossRefGoogle Scholar
  17. 17.
    Kuzmin YV, Burr GC, Jull ATJ, et al (2004) AMS 14C age of the Upper Palaeolithic skeletons from Sungir site, central Russian Plain. Nuclear Instruments and Methods in Physics Research 223B–4B:731–734Google Scholar
  18. 18.
    Sinitsyn A (2004) Les sépultures de Kostenki: chronologie, attribution culturelle, rite funéraire. Études et Recherches Archéologiques de l’Université de Liège 106:237–244Google Scholar
  19. 19.
    Einwögerer T, Friesinger H, Händel M, et al (2006) Upper Palaeolithic infant burials. Nature 444:285PubMedCrossRefGoogle Scholar
  20. 20.
    Svoboda JA (2006) The archeological contexts of the human remains. In: Trinkaus E, Svoboda JA (eds) Early Modern Human Evolution in Central Europe: the people of Dolní Věstonice and Pavlov. Oxford University Press, New York, pp 9–14Google Scholar
  21. 21.
    Svoboda JA (2008) The Upper Paleolithic burial area at Předmostí: ritual and taphonomy. J Hum Evol 54:15–33CrossRefGoogle Scholar
  22. 22.
    Jacobi RM, Higham TFG (2008) The “Red Lady” ages gracefully: new ultrafiltration AMS determinations from Paviland. J Hum Evol 55:898–907PubMedCrossRefGoogle Scholar
  23. 23.
    Pettitt PB, Richards MP, Maggi R, et al (2003) The Gravettian burial known as the Prince (’Il Principe’): new evidence for his age and diet. Antiquity 295:15–19Google Scholar
  24. 24.
    Zubov AA, Kharitonov VM (eds) (1984) Sunghir. Anthropological research (in Russian). “Nauka”, Moscow, 213 pGoogle Scholar
  25. 25.
    Bader ON (1998) Sungir. Palaeolithic burials (in Russian). In: Bader NO (ed) Upper Palaeolithic Site Sungir (graves and environment). Scientific World, Moscow, pp 5–160Google Scholar
  26. 26.
    Alexeeva TI, Bader NO, Munchaev RM, et al (eds) (2000) Homo Sungirensis. Upper Palaeolithic Man: ecological and evolutionary aspects of the investigation (in Russian with English summaries). Scientific World, Moscow, 468 pGoogle Scholar
  27. 27.
    White R (1999) Intégrer le contexte social et opérationnel: la construction matérielle de l’identité sociale à Sungir. In: Camps-Fabrer H (ed) Préhistoire d’os: recueil d’études sur l’industrie osseuse préhistorique. Publications de l’université de Provence, Aix-en-Provence, pp 319–331Google Scholar
  28. 28.
    Buzhilova AP (2000) Palaeopathological analysis of the adult Sunghir man (in Russian with English summary). In: Alexeeva TI, Bader NO, Munchaev RM, et al (eds) Homo sungirensis. Upper Palaeolithic Man: ecological and evolutionary aspects of the investigation. Scientific World, Moscow, pp 227–234Google Scholar
  29. 29.
    Buzhilova AP (2000) The analysis of anomalies and indicators of physiological stress in non-mature Sunghir individuals (in Russian with English summary). In: Alexeeva TI, Bader NO, Munchaev RM, et al (eds) Homo sungirensis. Upper Palaeolithic Man: ecological and evolutionary aspects of the investigation. Scientific World, Moscow, pp 302–314Google Scholar
  30. 30.
    Trinkaus E, Buzhilova AP (2011) The death and burial of Sunghir 1. Int J Osteoarchaeol doi 10.1002/oa.1227.Google Scholar
  31. 31.
    Formicola V, Buzhilova AP (2004) Double child burial from Sunghir (Russia): pathology and inferences for Upper Paleolithic funerary practices. Am J Phys Anthropol 124:189–198PubMedCrossRefGoogle Scholar
  32. 32.
    Buzhilova AP (2005) The environment and health condition of the Upper Palaeolithic Sunghir people of Russia. J Physiol Anthropol ApplHuman Sci 24:413–418CrossRefGoogle Scholar
  33. 33.
    Longin R (1971) New method for collagen extraction for radiocarbon dating. Nature 230:241–242PubMedCrossRefGoogle Scholar
  34. 34.
    Hedges REM, Law IA, Bronk CR, et al (1989) The Oxford accelerator mass spectrometry facility: technical developments in routine dating, Archaeometry 31:99–114CrossRefGoogle Scholar
  35. 35.
    Law IA, Hedges REM (1989) A semi-automated bone pretreatment system and the pretreatment of older and contaminated samples. Radiocarbon 31:247–253Google Scholar
  36. 36.
    Richards MP, Hedges REM (1999) Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic coast of Europe. J Archaeol Sci 26:717–722CrossRefGoogle Scholar
  37. 37.
    Brown T, Nelson D, Vogel J, et al (1988) Improved collagen extraction by modified Longin method. Radiocarbon 30:171–177Google Scholar
  38. 38.
    Higham TFG, Jacobi RM, Ramsey CR (2006) AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48:179–195Google Scholar
  39. 39.
    DeNiro MJ (1985) Post-mortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317:806–809CrossRefGoogle Scholar
  40. 40.
    Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for stable carbon and nitrogen isotope analysis. J Archaeol Sci 17:431–451CrossRefGoogle Scholar
  41. 41.
    Schoeninger M, DeNiro M (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Ac 48:625–639CrossRefGoogle Scholar
  42. 42.
    Bocherens H, Drucker D (2003) Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int J Osteoarchaeol 13:46–53CrossRefGoogle Scholar
  43. 43.
    Hedges REM, Reynard LM (2007) Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34:1240–1251CrossRefGoogle Scholar
  44. 44.
    Richards MP, Pettitt PB, Stiner MC, et al (2001) Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc Natl Acad Sci USA 98:6528–6532PubMedCrossRefGoogle Scholar
  45. 45.
    Trinkaus E, Soficaru A, Doboş A, et al (2009) Stable isotope evidence for early modern human diet in southeastern Europe: Peştera cu Oase, Peştera Muierii and Peştera Cioclovina UscatĂ. Materiale şi CercetĂri Arheologice 5:4–14Google Scholar
  46. 46.
    Richards MP, Trinkaus E (2009) Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc Natl Acad Sci USA 106:16034–16039PubMedCrossRefGoogle Scholar
  47. 47.
    Hu Y, Shang H, Tong H, et al (2009) Stable isotope dietary analysis of the Tianyuan 1 early modern human. Proc Natl Acad Sci USA 106:10971–10974PubMedCrossRefGoogle Scholar
  48. 48.
    Zilhão J (2005) Burial evidence for social differentiation of age classes in the Early Upper Paleolithic. Études et Recherches Archéologiques de l’Université de Liège 111:231–241Google Scholar
  49. 49.
    Trinkaus E, Svoboda J, Wojtal P, et al (2010) Human remains from the Moravian Gravettian: Morphology and taphonomy of additional elements from Dolní Věstonice II and Pavlov I. Int J Osteoarchaeol 20:645–669CrossRefGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2011

Authors and Affiliations

  1. 1.Institute of Archaeology of RASMoscowRussia
  2. 2.Department of AnthropologyUniversity of British ColumbiaVancouverCanada
  3. 3.Department of Human EvolutionMax-Planck Institute for Evolutionary AnthropologyLeipzigGermany
  4. 4.Department of AnthropologyWashington UniversitySaint LouisUSA

Personalised recommendations