Morphométrie géométrique et classification phylogénétique, application à la question de l’origine d’Homo sapiens en Asie

Article / Article

Résumé

Ce travail porte sur la continuité ou la rupture des fossiles, datant du dernier million d’années, retrouvés en Asie du Sud-Est. Les méthodes de morphométrie géométrique ont été appliquées aux crânes de 18 spécimens fossiles asiatiques datés de 6 000 à 1 150 000 ans. Les coordonnées de points repères ont été analysées avec la méthode GPA (generalized procrustes analysis). Des analyses de classification (UPGMA et NJ) et une analyse en composantes principales ont été utilisées afin d’identifier d’éventuels sous-groupes dans cet échantillon. Les distances de Mahalanobis entre ces sous-groupes ont été calculées.Deuxméthodes d’analyse phylogénétique ont été appliquées aux variables quantitatives: la méthode du maximum de vraisemblance et une analyse cladistique. Un échantillon de chimpanzés et de gorilles constituent les extragroupes. Les méthodes de classifications ont identifié deux groupes au sein de l’échantillon des fossiles: un groupe d’affinité Homo erectus et un autre d’affinité Homo sapiens. Les analyses phylogénétiques réalisées identifient le groupe Homo erectus comme étant monophylétique. En revanche, les individus du groupe fossile d’affinité Homo sapiens se retrouvent dispersés avec les hommes actuels. On peut donc en conclure que les fossiles étudiés appartiennent à deux taxons différents. Le premier (Homo sapiens fossiles) peut être considéré comme appartenant au même taxon que celui des hommes actuels. Le second appartient à un taxon différent.

Mots clés

Asie Homo erectus Morphométrie géométrique Phylogénie Méthode phénétique Cladistique 

Use of geometric morphometric data for a phylogenetic classification, application to the origin of Homo sapiens in Asia

Abstract

The objective of this study was to find out whether or not there is a morphological gap between the fossils living in the last million years discovered in Asia. The geometric morphometric methods were applied to the skulls of 18 specimen Asian fossils dated 6,000 to 1,150,000 years. Landmarks were analyzed by Generalized Procrustes Analysis. Principal component analysis (PCA) and hierarchical classification methods (UPGMA and NJ) were applied to those samples in order to identify homogenous subgroups. The Mahalanobis distances between those subgroups have been calculated. Two phylogenetic analyses have been applied to the quantitative characters: the maximum likelihood approach and a cladistic analysis. A sample of gorilla and chimpanzees was used as the out-group. Classification and PCA analysis identified 2 subgroups in the fossil group: one with an Homo sapiens affinity and the other with an Homo erectus affinity. Both phylogenetic analyses identified Homo erectus as a monophyletic subgroup, but the fossil subgroup with an Homo sapiens affinity are scattered among the extant Homo sapiens. We finally concluded that the fossils belong to 2 different taxa. The first (fossil Homo sapiens) belong to the same taxon than extant Homo sapiens, and the second is attributed to Homo erectus.

Keywords

Asia Homo erectus Geometric morphometric Phylogeny Phenetic Cladistic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Bräuer G (1992) Africa’s place in the evolution of Homo sapiens. In: Bräuer G (ed) Homo Continuity or Replacement: Controversies in Homo sapiens evolution. Balkema, Rotterdam, pp 83–98Google Scholar
  2. 2.
    Wolpoff MH (2000) Multiregional, not multiple origins. Am J Phys Anthropol 112:129–36CrossRefGoogle Scholar
  3. 3.
    Hublin JJ (1986) Some comments on the diagnostic features of Homo erectus. Anthropos Brno 23:175–87Google Scholar
  4. 4.
    Rightmire GP (1986) Species recognition and Homo erectus. J Hum Evol 15:823–6CrossRefGoogle Scholar
  5. 5.
    Turner A, Chamberlain A (1989) Speciation, morphological change and the status of African Homo erectus. J Hum Evol 18:115–30CrossRefGoogle Scholar
  6. 6.
    Bräuer G (1990) The occurrence of some controversial Homo erectus cranial features in the Zhoukoudian and East African hominids. Acta Anthropologica Sinica 9:350–8Google Scholar
  7. 7.
    Bräuer G, Mbua E (1992) Homo erectus features used in cladistics and their variability in Asian and African hominids. J Hum Evol 22:79–108CrossRefGoogle Scholar
  8. 8.
    Wolpoff MH, Hawks J, Frayer DW, et al (2001) Modern human ancestry at the peripheries: a test of the replacement theory. Science 291:293–7CrossRefGoogle Scholar
  9. 9.
    Bräuer G (2002) Homo ergaster et son statut taxinomique. In: Grimaud-Hervé D, Marchal F, Vialet A, Détroit F (eds) Le deuxième homme en Afrique. Errance, Paris, pp 116–23Google Scholar
  10. 10.
    Detroit F (2002) Origine et évolution des Homo sapiens en Asie du Sud-est: description et analyse morphométriques de nouveaux fossiles. Thèse de doctorat du Muséum national d’histoire naturelle, Paris, 444 pGoogle Scholar
  11. 11.
    Jacob T (1978) The puzzle of Solo Man. Modern Quaternary Research in South East Asia 4:31–40Google Scholar
  12. 12.
    Santa Luca AP (1980) The Ngandong fossils hominid. A comparative study of a far Eastern Homo erectus group. Yale University Publications in Anthropology 78:1–175Google Scholar
  13. 13.
    Storm P (1998) Life and death of Homo erectus in Australasia: an environmental approach to the fate of paleospecies. In: Sémah F, Falguères C, Grimaud-Hervé D, Sémah AM (eds) Origine des peuplements et chronologie des cultures paléolithiques dans le Sud-est asiatique. Semenanjung-Art’Com, Paris, pp 279–98Google Scholar
  14. 14.
    Thorne AG, Wolpoff MH (1981) Regional continuity in australasian pleistocene hominid evolution. Am J Phys Anthropol 55:337–49CrossRefGoogle Scholar
  15. 15.
    Tobias P (1985) Single characters and the total morphological pattern redefined: the sorting effected by a selection of morphological features of the early hominids. In: Delson E (ed) Ancestors: the hard evidence. A.R. Liss, New York, pp 94–101Google Scholar
  16. 16.
    Hawks J, Oh S, Hunley K, et al (2000) An Australasian test of the recent African origin theory using the WLH- 50 calvarium. J Hum Evol 39:1–22CrossRefGoogle Scholar
  17. 17.
    Wu X, Poirier FE (1995) Human evolution in China, Oxford University Press, New-York, Oxford 317 pGoogle Scholar
  18. 18.
    Etler DA (1996) The fossil evidence for human evolution in Asia. Annu Rev Anthropol 25:275–301CrossRefGoogle Scholar
  19. 19.
    Wu X (2004) On the origin of modern humans in China. Quat Int 117:131–40CrossRefGoogle Scholar
  20. 20.
    Kramer A, Donnelly SM, Kidder JH, et al (1995) Craniometric variation in large-bodied hominoids: testing the single-species hypothesis for Homo habilis. J Hum Evol 29:443–62CrossRefGoogle Scholar
  21. 21.
    Kramer A, Konigsberg LW (1999) Recognizing species diversity among large-bodied hominoids: a simulation test using missing data finite mixture analysis. J Hum Evol 36:409–21CrossRefGoogle Scholar
  22. 22.
    Donnelly SM, Kramer A (1999) Testing for multiple species in fossil samples: an evaluation and comparison of tests for equal relative variation. Am J Phys Anthropol 108:507–29CrossRefGoogle Scholar
  23. 23.
    Aiello LC, Collard M, Thackeray JF, et al (2000) Assessing exact randomization-based methods for determining the taxonomic significance of variability in the human fossil record. S Afr J Sci 96:179–83Google Scholar
  24. 24.
    Harvati K (2003) Quantitative analysis of Neanderthal temporal bone morphology using three-dimensional geometric morphometrics. Am J Phys Anthropol 120:323–38CrossRefGoogle Scholar
  25. 25.
    Harvati K, Frost SR, Mcnulty KP (2004) Neanderthal taxonomy reconsidered: implications of 3D primate models of intra- and interspecific differences. Proc Natl Acad Sci U S A 101:1147–52CrossRefGoogle Scholar
  26. 26.
    Kramer A (1993) Human taxonomic diversity in the Pleistocene: Does Homo erectus represent multiple hominid species? Am J Phys Anthropol 91:161–71CrossRefGoogle Scholar
  27. 27.
    Kramer A, Donnelly S, (1998) Species recognition among the robust hominids from Java. In: Sémah F, Falguères C, Grimaud-Hervé D, Sémah AM (eds) Origine des peuplements et chronologie des cultures paléolithiques dans le Sud-est asiatique. Semenanjung-Art’Com, Paris, pp 359–75Google Scholar
  28. 28.
    Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends in Ecology and Evolution 8:129–32CrossRefGoogle Scholar
  29. 29.
    Harvati K (2003) The Neanderthal taxonomic position: models of intra- and inter-specific craniofacial variation. J Hum Evol 44:107–32CrossRefGoogle Scholar
  30. 30.
    Bouée S, Detroit F (2008) Diversité taxonomique des hominides fossiles en Asie: de nouvelles méthodes pour une vieille question. Bull Mem Soc Anthropol Paris 20:13–31Google Scholar
  31. 31.
    Darlu P, Tassy P (1993) La reconstruction phylogénétique: concepts et méthodes, Masson, Paris, 244 pGoogle Scholar
  32. 32.
    Zeitoun V (1996) Cladistique et paléoanthropologie: le cas de l’espèce Homo erectus Dubois 1894. Thèse de doctorat de l’université de Bordeaux I, 358 pGoogle Scholar
  33. 33.
    Zeitoun V (2000) Révision de l’espèce Homo erectus Dubois, 1893, utilisation des données morphologiques et métriques en cladistique, reconsidération du cas Homo erectus. Bull Mem Soc Anthropol Paris 12:1–200Google Scholar
  34. 34.
    Poe S, WienS JJ (2000) Character selection and the methodology of morphological phylogenetics. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, London, pp 20–36Google Scholar
  35. 35.
    Felsenstein J (1973) Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–9CrossRefGoogle Scholar
  36. 36.
    Goloboff P, Farris J, Nixon K (2003) TNT: tree analysis using new technology. Program and documentation. available at http://www.zmuc.dk/public/phylogeny/tnt
  37. 37.
    Goloboff P, Mattoni CI, Quinteros AS (2006). Continuous characters analyzed as such. Cladistics 24:774–86CrossRefGoogle Scholar
  38. 38.
    Goloboff PA, Farris JS, Nixon K (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–86CrossRefGoogle Scholar
  39. 39.
    Gonzalez-Jose R, Escapa I, Neves WA, et al (2008) Cladistic analysis of continuous modularized traits provides phylogenetic signals in Homo evolution. Nature 453:775–8CrossRefGoogle Scholar
  40. 40.
    Dutour O, Hublin JJ, Vandermeersch B (2005) Origine et évolution des populations humaines. Comité des travaux historiques et scientifiques, 395 pGoogle Scholar
  41. 41.
    Shen G, Gao X, Gao B, et al (2009) Age of Zhoukoudian Homo erectus determined with Al/Be Burial Dating. Nature 458:198–200CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Antón SC (2002) Evolutionary significance of cranial variation in Asian Homo erectus. Am J Phys Anthropol 118:301–23CrossRefGoogle Scholar
  44. 44.
    Rohlf FJ (1990) Rotational fit Procruste methods. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan morphometrics workshop. The university of Michigan museum of zoology, Ann Arbor, pp 227–36Google Scholar
  45. 45.
    Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge, 460 pGoogle Scholar
  46. 46.
    The R Development Core Team (2006) R: a language and environment for statistical computing, R foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0, URL http://www.r-project.org. Consulté le 21 octobre 2007.Google Scholar
  47. 47.
    Dryden I (2006) Shapes: Statistical shape analysis. R package version 1, 10 pGoogle Scholar
  48. 48.
    Paradis E, Strimmer K, Claude J, et al (2006) Ape: Analyses of phylogenetics and evolution. R package version 1.8.4Google Scholar
  49. 49.
    Maechler M, Rousseeuw P, STruyf A, et al (2005) Cluster analysis basics and extensions, unpublishedGoogle Scholar
  50. 50.
    Felsenstein J (1973) Maximum-likelihood estimation of evolutionary trees from continuous characters. Am J Hum Genet 10:193–9.Google Scholar
  51. 51.
    Felsenstein J (1989) PHYLIP — Phylogeny Inference Package (Version 3.2). Cladistics 5:164–6Google Scholar
  52. 52.
    Kurten B, (1964) The evolution of the polar bear Ursus maritimus. Acta Zool Fenn 108:1–26Google Scholar
  53. 53.
    Talbot SL, Shields GF (1996) A phylogeny of the bears ursidae inferred from complete sequences of three mitochondrial genes. Mol Phylogenet Evol 5:567–75CrossRefGoogle Scholar
  54. 54.
    Kosiol C, Goldman N (2005) Different versions of the Dayhoff rate matrix. Mol Biol Evol 22:193–9CrossRefGoogle Scholar
  55. 55.
    Paradis E (2006) Analysis of phylogenetics and evolution with R. Springer-Verlag, Heidelberg, 211 pGoogle Scholar
  56. 56.
    Hennig W (1950) Grundzüge einer theorie der phylogenetischen systematik. Deutscher Zentralverlag, Berlin, 370 pGoogle Scholar
  57. 57.
    Hennig W (1966) Phylogenetic systematics. University of Illinois Press Urbana, 280 pGoogle Scholar
  58. 58.
    Farris JS (1970) Methods for computing Wagner trees. Syst Zool 19:83–92CrossRefGoogle Scholar
  59. 59.
    Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  60. 60.
    Lecointre G, Le Guyader H (2006) Classification phylogénétique du vivant, Belin, Paris, 560 pGoogle Scholar
  61. 61.
    Lewis PO (2001) Phylogenetic systematics turns over a new leaf. Trends Ecol Evol 16:30–7CrossRefGoogle Scholar
  62. 62.
    Holder M, Lewis PO (2003) Phylogeny estimation: traditional and Bayesian approaches. Nature Rev Gen 4:275–84CrossRefGoogle Scholar
  63. 63.
    Van Dijk MA, Madsen O, Catzeflis F, et al (2001) Protein sequence signatures support the African clade of mammals. Proc Natl Acad Sci U S A 98:188–93CrossRefGoogle Scholar
  64. 64.
    Prasad AB, Allard MW (2008) Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 25:1795–808CrossRefGoogle Scholar
  65. 65.
    Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.72. http://mesquiteproject.org
  66. 66.
    Adams DC, Rosenberg MS (1998) Partial Warps, A Comment on Fink and Zelditch 1995. Syst Biol 47:168–73CrossRefGoogle Scholar
  67. 67.
    Rohlf FJ (1998) On Applications of geometric morphometrics to studies of ontogeny and phylogeny. Syst Biol 47:147–58CrossRefGoogle Scholar
  68. 68.
    Zelditch ML, Finck WL, Swiderski DL, et al (1998) On Applications of geometric morphometrics to studies of ontogeny and phylogeny: a reply to Rohlf. Syst Biol 47:159–67CrossRefGoogle Scholar
  69. 69.
    Zelditch ML, Finck WL (1998) Partial warps, phylogeny and ontogeny: A reply to Adams and Rosenberg. Syst Biol 47:345–8Google Scholar
  70. 70.
    Zelditch MA, Swiderski DL, FInk WL (2000) Discovery of phylogenetic characters in morphometric data. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, London, pp 37–83Google Scholar
  71. 71.
    Zelditch ML, Fink WL, Swiderski DL (1995) Morphometrics, homology, and phylogenetics: quantified characters as synapomorphies. Syst Biol 44:179–89Google Scholar
  72. 72.
    Rohlf FJ (2002) Geometric morphometrics and phylogeny. In: McLeod N, Forey P (eds) Morphology, shape and phylogeny. Taylor & Francis, London, New York, pp 175–93CrossRefGoogle Scholar
  73. 73.
    Mcleod N, Forey PL (2002) Morphology, shape and phylogeny, Taylor & Francis, London, New York, 308 pCrossRefGoogle Scholar
  74. 74.
    Felsenstein J (2002) Quantitative characters, phylogenies and morphometrics. In: McLeod N, Forey P (eds) Morphology, shape and phylogeny. Taylor & Francis, London, New York, pp 27–44CrossRefGoogle Scholar
  75. 75.
    Swiderski DL, Zelditch MA, Fink WL (2002) Comparability, morphometrics and phylogeny systematics. In: McLeod N, Forey P (eds) Morphology, shape and phylogeny. Taylor & Francis, London, New York, pp 67–99CrossRefGoogle Scholar
  76. 76.
    Rae TC (2002) Scaling, polymorphism and cladistic analysis. In: McLeod N, Forey P (eds) Morphology, shape and phylogeny. Taylor & Francis, London, New York, pp 45–52CrossRefGoogle Scholar
  77. 77.
    Groves CP, Mazak V (1975) An approach to the taxonomy of the Hominidae: gracile Villafranchian hominids of Africa. Cas Mineral Geologii 20:225–47Google Scholar
  78. 78.
    Andrews P (1984) An alternative interpretation of the characters used to define Homo erectus. Courier Forschungsinstitut Senckenberg 69:167–75Google Scholar
  79. 79.
    Wood B (1991) Koobi Fora research project, 4: hominid cranial remains, Clarendon Press, Oxford, 466 pGoogle Scholar
  80. 80.
    Antón SC (2003) Natural history of Homo erectus. Yrbk Phys Anthropol 46:126–170CrossRefGoogle Scholar
  81. 81.
    Kidder JH, Durband AC (2004) A re-evaluation of the metric diversity within Homo erectus. J Hum Evol 46:299–315CrossRefGoogle Scholar
  82. 82.
    Durband A (2006) Craniometric variation within the Pleistocene of Java: The Ngawi 1 cranium. Hum Evol 21:193–201CrossRefGoogle Scholar
  83. 83.
    Bilsborough A, Wood B (1986) The nature, origin and fate of Homo erectus. In: B.A. Wood, L. Martin, P. Andrews (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 295–316Google Scholar
  84. 84.
    Bilsborough A, Wood B (1988) Cranial morphometry of early hominids: facial region. Am J Phys Anthropol 76:61–86CrossRefGoogle Scholar

Copyright information

© Société d'anthropologie de Paris et Springer-Verlag France 2010

Authors and Affiliations

  1. 1.Département de préhistoire du Muséum national d’histoire naturelleinstitut de paléontologie humaineParisFrance

Personalised recommendations