KI - Künstliche Intelligenz

, Volume 33, Issue 2, pp 151–161 | Cite as

Plug, Plan and Produce as Enabler for Easy Workcell Setup and Collaborative Robot Programming in Smart Factories

  • Michael WojtynekEmail author
  • Jochen Jakob Steil
  • Sebastian Wrede
Technical Contribution


The transformation of today’s manufacturing lines into truly adaptive systems facilitating individualized mass production requires new approaches for the efficient integration, configuration and control of robotics and automation components. Recently, various types of Plug-and-Produce architectures were proposed that support the discovery, integration and configuration of field devices, automation equipment or industrial robots during commissioning or even operation of manufacturing systems. However, in many of these approaches, the configuration possibilities are limited, which is a particular problem if robots operate in dynamic environments with constrained workspaces and exchangeable automation components as typically required for flexible manufacturing processes. In this article, we introduce an extended Plug-and-Produce concept based on dynamic motion planning, co-simulation and a collaborative human-robot interaction scheme that facilitates the quick adaptation of robotics behaviors in the context of a modular production system. To confirm our hypothesis on the efficiency and usability of this concept, we carried out a feasibility study where participants performed a flexible workcell setup. The results indicate that the assistance and features for planning effectively support the users in tasks of different complexity and that a quick adaption is indeed possible. Based on our observations, we identify further research challenges in the context of Plug, Plan and Produce applied to smart manufacturing.


Industry 4.0 Collaborative robots Smart workcells Plug-and-Produce 



This work received funding from the German Federal Ministry of Education and Research (BMBF) within the Leading-Edge Cluster “Intelligent Technical Systems OstWestfalenLippe” (it’s OWL) managed by the Project Management Agency Karlsruhe (PTKA). We are grateful to the HARTING Technology Group supporting this work and contribution with the cooperation in the it’s OWL-FlexiMiR project.


  1. 1.
    Slama D, Puhlmann F, Morrish J, Bhatnagar R (2015) Enterprise IoT: strategies and best practices for connected products and services. O’Reilly UK Ltd., LondonGoogle Scholar
  2. 2.
    Bunse B, Kagermann H, Wahlster W (2014) The SmartFactoryKL perspective, future markets Industrie 4.0, p 26Google Scholar
  3. 3.
    Scholz S, Elkaseer A, Müller T, Gengenbach U, Hagenmeyer V (2018) Smart modular reconfigurable fully-digital manufacturing system with a knowledge-based framework: example of a fabrication of microfluidic chips. In: 14th IEEE international conference on automation science and engineering (CASE), München, 43.22.03; LK 01, 20–24 Aug 2018Google Scholar
  4. 4.
    Vogel-Heuser B, Kegel G, Bender K, Wucherer K (2009) Global information architecture for industrial automation. Automatisierungstechnische Praxis (atp). 1(51):108–115Google Scholar
  5. 5.
    Wrede S, Beyer O, Dreyer C, Wojtynek M, Steil JJ (2016) Vertical integration and service orchestration for modular production systems using business process modelsGoogle Scholar
  6. 6.
    Schütz D, Schraufstetter M, Folmer J, Gmeiner T, Shea K (2011) Highly Reconfigurable Production Systems Controlled by Real-Time Agents. In: 2011 IEEE 16th conference on emerging technologies and factory automation (ETFA)Google Scholar
  7. 7.
    Weyer S, Schmitt M, Ohmer M, Gorecky D (2015) Towards Industry 4.0 - Standardization as the crucial challenge for highly modular, multi-vendor production systems. IFAC-PapersOnLine 48(3):579–584. Accessed 30 Mar 2019
  8. 8.
    Patel R, Hedelind M, Lozan-Villegas P (2012) Enabling robots in small-part assembly lines: the ROSETTA approach—an industrial perspective. In: Proceedings of German Conference on Robotics (ROBOTIK), pp 1–5Google Scholar
  9. 9.
    Kuhlenkötter B, Schyja A, Hypki A, Miegel V (2010) Robot Workcell simulation with automationML support-an element of the CAx-tool chain in industrial automation. In: Robotics (ISR), pp 1076–1082. Accessed 30 Mar 2019
  10. 10.
    Arai T, Aiyama Y, Sugi M, Ota J (2001) Holonic assembly system with plug and produce. Comput Ind 46(3):289–299CrossRefGoogle Scholar
  11. 11.
    Schriegel S, Jasperneite J, Niggemann O (2014) Plug and work für verteilte Echtzeitsysteme mit Zeitsynchronisation. In: Halang WA, Unger H (eds) Industrie 4.0 und Echtzeit. Springer, Berlin, pp 11–20CrossRefGoogle Scholar
  12. 12.
    Schriegel S, Wisniewski L (2014) Investigation in automatic determination of time synchronization accuracy of ptp networks with the objective of plug-and-work. In: 2014 IEEE international symposium on precision clock synchronization for measurement, control, and communication (ISPCS), pp 20–25Google Scholar
  13. 13.
    Schleipen M, Lüder A, Sauer O, Flatt H, Jasperneite J (2015) Requirements and concept for plug-and-work-adaptivity in the context of industry 4.0. 63:801–820Google Scholar
  14. 14.
    Hennecke A, Ruskowski M (2018) Design of a flexible robot cell demonstrator based on CPPS concepts and technologies. In: 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE, pp 534–539Google Scholar
  15. 15.
    Pfrommer J, Stogl D, Aleksandrov K, Navarro SE, Hein B, Beyerer J (2015) Plug & produce by modelling skills and service-oriented orchestration of reconfigurable manufacturing systems. At-Automatisierungstechnik 63(10):790–800CrossRefGoogle Scholar
  16. 16.
    Birtel M, Mohr F, Hermann J, Bertram P, Ruskowski M (2018) Requirements for a human-centered condition monitoring in modular production environments. IFAC-PapersOnLine 51(11):909–914CrossRefGoogle Scholar
  17. 17.
    Steinmetz F, Wollschläger A, Weitschat R (2018) RAZER - A HRI for visual task-level programming and intuitive skill parameterization. IEEE Robot Autom Lett 3(3):1362–1369CrossRefGoogle Scholar
  18. 18.
    Paxton C, Hundt A, Jonathan F, Guerin K, Hager GD (2017) CoSTAR: Instructing collaborative robots with behavior trees and vision. In: Proceedings - IEEE international conference on robotics and automation, pp 564–571Google Scholar
  19. 19.
    Guerin KR, Lea C, Paxton C, Hager GD (2015) A framework for end-user instruction of a robot assistant for manufacturing. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 6167–6174Google Scholar
  20. 20.
    Jaekel R, Dirschl G (2017) Method and system for programming a robot. U.S. Patent 2017/0 190 052A1Google Scholar
  21. 21.
    ArtiMinds, Programming Suite. Accessed 28 Nov 2018
  22. 22.
    de Gea Fernández J, Mronga D, Günther M, Wirkus M, Schröer M, Stiene S, Kirchner E, Bargsten V, Bänziger T, Teiwes J, Krüger T, Kirchner F (2017) iMRK: Demonstrator for Intelligent and Intuitive HumanRobot Collaboration in Industrial Manufacturing. KI - Künstliche Intell 31(2):203–207. CrossRefGoogle Scholar
  23. 23.
    Wein S, Wolff L, Malik A, Storms S, Herfs WJ (2018) Concept for automated robot programming using image processing. In: 8th Congress of the German academic association for production technology, Aachen (Germany), Springer, Cham, pp 705–714. Available Accessed 30 Mar 2019
  24. 24.
    Rossano GF, Martinez C, Hedelind M, Murphy S, Fuhlbrigge TA (2013) Easy robot programming concepts: an industrial perspective. In: 2013 IEEE international conference on automation science and engineering (CASE), pp 1119–1126Google Scholar
  25. 25.
    Furmans K, Schonung F (2010) Plug-and-work material handling systems. In: 11th IMHRC Proceedings (Milwaukee, Wisconsin, USA)Google Scholar
  26. 26.
    Sauer O, Ebel M (2007) Plug-and-work von Produktionsanlagen und übergeordneter Software. In: Aktuelle Trends in der Softwareforschung. Tagungsband zum Do-It. Software-Forschungstag 2007. Hrsg.: K. Haasis. MFG-Stiftung Baden-Württemberg, StuttgartGoogle Scholar
  27. 27.
    Pedersen MR, Nalpantidis L, Andersen RS, Schou C, Bøgh S, Krüger V, Madsen O (2016) Robot skills for manufacturing: from concept to industrial deployment. Robot Comput Integr Manuf 37:282–291CrossRefGoogle Scholar
  28. 28.
    Bøgh S, Nielsen OS, Pedersen MR, Krüger V, Madsen O (2012) Does your robot have skills? In: Proceedings of the 43rd international symposium on robotics, vol 6Google Scholar
  29. 29.
    Schou C, Andersen RS, Chrysostomou D, Bøgh S, Madsen O (2018) Skill-based instruction of collaborative robots in industrial settings. Robot Comput Integr Manuf 53:72–80CrossRefGoogle Scholar
  30. 30.
    Wojtynek M, Oestreich H, Beyer O, Wrede S (2017) Collaborative and robot-based plug & produce for rapid reconfiguration of modular production systems. In: Proceedings of the 2017 IEEE SICE international symposium on system integration, IEEEGoogle Scholar
  31. 31.
    Şucan IA, Moll M, Kavraki LE (2012) The open motion planning library. IEEE Robot Autom Magn 19(4):72–82. Accessed 30 Jan 2019
  32. 32.
    Video: Plug, Plan and Produce for Collaborative Robot Programming in Smart Workcells. Accessed 30 Mar 2019
  33. 33.
    Figl K (2009) ISONORM 9241/10 und isometrics: usability-Fragebögen im Vergleich. 01, pp 143–152Google Scholar
  34. 34.
    Gediga G, Hamborg K-C, Düntsch I (1999) The IsoMetrics usability inventory: an operationalization of ISO 9241–10 supporting summative and formative evaluation of software systems. Behav Inf Technol 18(3):151–164CrossRefGoogle Scholar
  35. 35.
    Brooke J (1996) SUS-A quick and dirty usability scale. Usability evaluation in industry. CRC Press, Boca Raton. iSBN: 9780748404605. Available Accessed 30 Mar 2019
  36. 36.
    Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock PA, Meshkati N (eds), Human Mental Workload, ser. Advances in Psychology, North-Holland, vol 52, pp 139–183.

Copyright information

© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute for Cognition and Robotics (CoR-Lab)Bielefeld UniversityBielefeldGermany
  2. 2.Institute for Robotics and Process Control (IRP)BraunschweigGermany

Personalised recommendations