Advertisement

KI - Künstliche Intelligenz

, Volume 32, Issue 2–3, pp 157–164 | Cite as

ASP Applications in Bio-informatics: A Short Tour

  • Alessandro Dal Palù
  • Agostino Dovier
  • Andrea Formisano
  • Enrico Pontelli
Technical Contribution
  • 85 Downloads

Abstract

We report on how the declarative nature of Answer Set Programming allows one to model and solve some well-known and challenging classes of problems in the general domain of bioinformatics. We briefly survey the main results appeared in the areas of genomics, structure prediction, and systems biology.

Keywords

Answer set programming Bioinformatics 

Notes

Acknowledgements

This work is partially supported by projects GNCS 2017, PRID UNIUD ENCASE, YASMIN, and CLTP, and NSF Grants 1458595, 1440911, 1401639, and 1345232. A. Dal Palù, A. Dovier, and A. Formisano are IN\(\delta\)AM GNCS-members.

References

  1. 1.
    Abdallah EB, Folschette M, Roux O, Magnin M (2017) ASP-based method for the enumeration of attractors in non-deterministic synchronous and asynchronous multi-valued networks. AMB 12:20Google Scholar
  2. 2.
    Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230CrossRefGoogle Scholar
  3. 3.
    Campeotto F, Dal Palù A, Dovier A, Fioretto F, Pontelli E (2013) A constraint solver for flexible protein model. JAIR 48:953–1000MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen L, Wang RS, Zhang XS (2009) Biomolecular networks: methods and applications in systems biology. Wiley, HobokenCrossRefGoogle Scholar
  5. 5.
    Chisham B, Wright B, Le T, Son T, Pontelli E (2011) CDAO-store: ontology-driven data integration for phylogenetic analysis. BMC Bioinform 12:98CrossRefGoogle Scholar
  6. 6.
    Clote P, Backofen R (2001) Computational molecular biology: an introduction. Wiley, HobokenzbMATHGoogle Scholar
  7. 7.
    Cohen J (2004) Bioinformatics: an introduction for computer scientists. ACM Comput Surv 36(2):122–158CrossRefGoogle Scholar
  8. 8.
    Collet G, Eveillard D, Gebser M, Prigent S, Schaub T, Siegel A, Thiele S (2013) Extending the metabolic network of Ectocarpus siliculosus using answer set programming. In: Cabalar P, Son T (eds) LPNMR’13, LNCS, vol 8148. Springer, Berlin, pp 245–256Google Scholar
  9. 9.
    Corblin F, Fanchon E, Trilling L, Chaouiya C, Thieffry D (2012) Automatic inference of regulatory and dynamical properties from incomplete gene interaction and expression data. IPCAT 2012, LNCS, vol 7223. Springer, Berlin, pp 25–30Google Scholar
  10. 10.
    Crick F (1970) Central dogma of molecular biology. Nature 227:561–563CrossRefGoogle Scholar
  11. 11.
    Dal Palù A, Dovier A, Fogolari F (2004) Constraint logic programming approach to protein structure prediction. BMC Bioinform 5:186CrossRefzbMATHGoogle Scholar
  12. 12.
    Dal Palù A, Dovier A, Fogolari F, Pontelli E (2010) CLP-based protein fragment assembly. TPLP 10(4–6):709–724MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dal Palù A, Dovier A, Formisano A, Pontelli E (2018) Exploring life: answer set programming in bioinformatics. In: Kifer M, Liu YA (eds) Declarative logic programming: theory, systems, and applications, Chap 7. ACM Press (to appear) Google Scholar
  14. 14.
    Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35(3):125–129CrossRefGoogle Scholar
  15. 15.
    Dovier A, Formisano A, Pontelli E (2009) An empirical study of constraint logic programming and answer set programming solutions of combinatorial problems. JETAI 21(2):79–121zbMATHGoogle Scholar
  16. 16.
    Dovier A, Formisano A, Pontelli E (2011) Perspectives on logic-based approaches for reasoning about actions and change. In: Balduccini M, Son TC (eds) LP, KR, and NMR, LNCS, vol 6565. Springer, Berlin, pp 259–279Google Scholar
  17. 17.
    Dworschak S, Grell S, Nikiforova VJ, Schaub T, Selbig J (2008) Modeling biological networks by action languages via answer set programming. Constraints 13(1–2):21–65MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dworschak S, Grote T, König A, Schaub T, Veber P (2008) The system BioC for reasoning about biological models in action language C. In: 20th IEEE international conference on tools with artificial intelligence (ICTAI 2008), November 3–5, 2008, Dayton, Ohio, USA, vol 1. IEEE Computer Society 2008, ISBN 978-0-7695-3440-4Google Scholar
  19. 19.
    Erdem E (2011) Applications of answer set programming in phylogenetic systematics. LP, KR, and NMR, vol 6565. Springer, Berlin, pp 415–431Google Scholar
  20. 20.
    Erdem E, Gelfond M, Leone N (2016) Applications of answer set programming. AI Mag 37(3):53–68CrossRefGoogle Scholar
  21. 21.
    Erdem E, Türe F (2008) Efficient haplotype inference with answer set programming. In: Fox D, Gomes CP (eds) Proceedings of the 23rd AAAI conference on artificial intelligence, AAAI 2008, Chicago, Illinois, USA, July 13–17, 2008. AAAI Press. ISBN 978-1-57735-368-3Google Scholar
  22. 22.
    Estabrook G (1997) Ancestor-descendant relations and incompatible data: motivation for research in discrete mathematics. In: Mirkin B, McMorris FR, Roberts FS, Rzhetsky A (eds) Mathematical hierarchies and biology, Proceedings of a DIMACS workshop, November 13–15, 1996, DIMACS series in discrete mathematics and theoretical computer science, vol 37, DIMACS/AMS 1997Google Scholar
  23. 23.
    Fayruzov T, Cock MD, Cornelis C, Vermeir D (2009) Modeling protein interaction networks with answer set programming. In: Proceedings of 2009 IEEE international conference on bioinformatics and biomedicine, BIBM 2009, Washington, DC, USA, November 1–4, 2009. IEEE Computer Society, ISBN 978-0-7695-3885-3Google Scholar
  24. 24.
    Fayruzov T, Janssen J, Vermeir D, Cornelis C, Cock MD (2011) Modelling gene and protein regulatory networks with answer set programming. IJDMB 5(2):209–229CrossRefGoogle Scholar
  25. 25.
    Fitime LF, Roux O, Guziolowski C, Paulevé L (2017) Identification of bifurcation transitions in biological regulatory networks using answer-set programming. Algorithms Mol Biol 12(1):19:1–19:14CrossRefGoogle Scholar
  26. 26.
    Folschette M, Paulevé L, Inoue K, Magnin M, Roux O (2012) Concretizing the process hitting into biological regulatory networks. In: Gilbert D, Heiner M (eds) CMSB, LNCS, vol 7605. Springer, Berlin, pp 166–186Google Scholar
  27. 27.
    Frioux C, Schaub T, Schellhorn S, Siegel A, Wanko P (2017) Hybrid metabolic network completion. In: Balduccini M, Janhunen T (eds) LPNMR 2017, LNCS, vol 10377. Springer, Berlin, pp 308–321Google Scholar
  28. 28.
    Gebser M, Guziolowski C, Ivanchev M, Schaub T, Siegel A, Thiele S, Veber P (2010) Repair and prediction (under inconsistency) in large biological networks with answer set programming. In: Lin F, Sattler U, Truszczyński M (eds) KR. AAAI Press, Palo AltoGoogle Scholar
  29. 29.
    Gebser M, Schaub T, Thiele S, Veber P (2011) Detecting inconsistencies in large biological networks with answer set programming. TPLP 11(2–3):323–360MathSciNetzbMATHGoogle Scholar
  30. 30.
    Guziolowski C, Videla S, Eduati F, Thiele S, Cokelaer T, Siegel A, Saez-Rodriguez J (2013) Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 29(18):2320–2326CrossRefGoogle Scholar
  31. 31.
    International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRefGoogle Scholar
  32. 32.
    Jones NC, Pevzner P (2004) An introduction to bioinformatics algorithms. Computational molecular biology. MIT Press, Cambridge, London (2004)Google Scholar
  33. 33.
    Kavanagh J, Mitchell DG, Ternovska E, Manuch J, Zhao X, Gupta A (2006) Constructing Camin-Sokal phylogenies via answer set programming. In: Hermann M, Voronkov A (eds) Proc of LPAR, LNCS, vol 4246. Springer, Berlin, pp 452–466Google Scholar
  34. 34.
    Koponen L, Oikarinen E, Janhunen T, Säilä L (2015) Optimizing phylogenetic supertrees using answer set programming. TPLP 15(4–5):604–619MathSciNetzbMATHGoogle Scholar
  35. 35.
    Lancia G, Pinotti MC, Rizzi R (2004) Haplotyping populations by pure parsimony. INFORMS J Comput 16(4):348–359MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Le T, Nguyen H, Pontelli E, Son T (2012) ASP at work: an ASP implementation of PhyloWS. In: Dovier A, Santos Costa V (eds) Technical communications of the 28th international conference on logic programming, ICLP 2012, September 4–8, 2012, Budapest, Hungary. LIPIcs 17, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, ISBN 978-3-939897-43-9Google Scholar
  37. 37.
    Ostrowski M, Paulevé L, Schaub T, Siegel A, Guziolowski C (2016) Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming. Biosystems 149:139–153CrossRefGoogle Scholar
  38. 38.
    Prosdocimi F, Chisham B, Pontelli E, Thompson J, Stoltzfus A (2009) Initial implementation of a comparative data analysis ontology. Evol Bioinform 5:47–66CrossRefGoogle Scholar
  39. 39.
    Ray O, Soh T, Inoue K (2011) Analyzing pathways using ASP-based approaches. In: Horimoto K, Nakatsui M, Popov N (eds) ANB, LNCS, vol 6479. Springer, Berlin, pp 167–183Google Scholar
  40. 40.
    Schaub T, Thiele S (2009) Metabolic network expansion with answer set programming. In: Hill PM, Warren DS (eds) Proc of ICLP, LNCS, vol 5649. Springer, Berlin, pp 312–326Google Scholar
  41. 41.
    Stoltzfus A et al (2013) Phylotastic! making tree-of-life knowledge accessible, reusable and convenient. BMC Bioinform 14:158CrossRefGoogle Scholar
  42. 42.
    Tran N, Baral C (2007) Reasoning about non-immediate triggers in biological networks. Ann Math Artif Intell 51(2–4):267–293MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Tran N, Baral C (2009) Hypothesizing about signaling networks. J Appl Logic 7(3):253–274MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Wu G, You J, Lin G (2007) Quartet-based phylogeny reconstruction with answer set programming. IEEE/ACM Trans Comput Biol Bioinform 4(1):139–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversity of ParmaParmaItaly
  2. 2.Dipartimento di Scienze Matematiche, Informatiche e FisicheUniversity of UdineUdineItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversity of PerugiaPerugiaItaly
  4. 4.Department of Computer ScienceNew Mexico State UniversityLas Cruces, NMUSA

Personalised recommendations