Advertisement

KI - Künstliche Intelligenz

, Volume 32, Issue 2–3, pp 151–155 | Cite as

Answer Set Programming in Linguistics

  • Peter Schüller
Technical Contribution
  • 42 Downloads

Abstract

This survey collects scientific works where answer set programming, a declarative knowledge representation and reasoning formalism, is applied to natural language processing and computational linguistics.

Keywords

Answer set programming Natural language processing Computational linguistics 

References

  1. 1.
    Bailey D, Harrison A, Lierler Y, Lifschitz V, Michael J (2015) The winograd schema challenge and reasoning about correlation. In: Working notes of the symposium on logical formalizations of commonsense reasoning (CommonSense), pp 17–24Google Scholar
  2. 2.
    Baker CF, Fillmore CJ, Lowe JB (1998) The berkeley framenet project. In: Proceedings of the 17th international conference on computational linguistics (COLING). Association for Computational Linguistics, pp 86–90Google Scholar
  3. 3.
    Balduccini M, Baral C, Lierler Y (2008) Knowledge representation and question answering. Handbook of knowledge representation. Elsevier, New York, pp 779–819CrossRefGoogle Scholar
  4. 4.
    Baral C, Dzifcak J, Gonzalez MA, Gottesman A (2012) Typed answer set programming lambda calculus theories and correctness of inverse lambda algorithms with respect to them. Theory Pract Logic Programm 12(4–5):775–791MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Baral C, Dzifcak J, Gonzalez MA, Zhou J (2011) Using inverse lambda and generalization to translate english to formal languages. In: Proceedings of the ninth international conference on computational semantics (IWCS). Association for Computational Linguistics, pp 35–44Google Scholar
  6. 6.
    Baral C, Liang S (2012) From knowledge represented in frame-based languages to declarative representation and reasoning via ASP. In: Proceedings of the thirteenth international conference on the principles of knowledge representation and reasoning (KR). AAAI Press, pp 413–423Google Scholar
  7. 7.
    Baral C, Tari L (2006) Using ansprolog with link grammar and WordNet for QA with deep reasoning. In: Ninth international conference on information technology (ICIT). IEEE, pp 125–128Google Scholar
  8. 8.
    Baumgartner P, Burchardt A (2004) Logic programming infrastructure for inferences on FrameNet. In: Alferes JJ, Leite J (eds) Logics in artificial intelligence. Springer, Berlin, Heidelberg, pp 591–603CrossRefGoogle Scholar
  9. 9.
    Bos J (2008) Wide-coverage semantic analysis with Boxer. In: Conference on Semantics in Text Processing. Association for Computational Linguistics, pp 277–286Google Scholar
  10. 10.
    Brooks D, Erdem E, Erdoǧan S, Minett J, Ringe D (2007) Inferring phylogenetic trees using answer set programming. J Autom Reason 39:471–511MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chaudhri VK, Cheng BH, Overholtzer A, Roschelle J, Spaulding A, Clark P, Greaves M, Gunning D (2013) Inquire biology: a textbook that answers questions. AI Magazine 34(3):55–72CrossRefGoogle Scholar
  12. 12.
    Chaudhri VK, Heymans S, Wessel M, Son TC (2013) Object-oriented knowledge bases in logic programming. In: Technical communication of international conference in logic programmingGoogle Scholar
  13. 13.
    Chaudhri VK, Son TC (2012) Specifying and reasoning with underspecified knowledge bases using answer set programming. In:Proceedings of the thirteenth international conference on principles of knowledge representation and reasoning (KR). AAAI Press, pp 424–434Google Scholar
  14. 14.
    Dagan I, Glickman O, Magnini B (2006) The PASCAL recognising textual entailment challenge. In: Machine Learning Challenges. Springer, New York, pp 177–190Google Scholar
  15. 15.
    Drescher C, Walsh T (2011) Modelling grammar constraints with answer set programming. In: Gallagher JP, Gelfond M (eds) Technical communication of international conference in logic programming, vol 11. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Germany, pp 28–39Google Scholar
  16. 16.
    Erdem E, Lifschitz V, Ringe D (2006) Temporal phylogenetic networks and logic programming. Theory Pract Logic Programm 6(5):539–558MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Erdem E, Oztok U (2015) Generating explanations for biomedical queries. Theory Pract Logic Programm 15(1):35–78MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fuchs NE, Kaljurand K, Kuhn T (2008) Attempto controlled english for knowledge representation. In: Baroglio C, Bonatti PA, Małuszyński J, Marchiori M, Polleres A, Schaffert S (eds) Reasoning web. Springer, Berlin, Heidelberg, pp 104–124CrossRefGoogle Scholar
  19. 19.
    Guy SC, Schwitter R (2017) The PENG ASP system: architecture, language and authoring tool. Lang Resour Eval 51(1):67–92CrossRefGoogle Scholar
  20. 20.
    Hobbs J, Stickel M, Martin P, Edwards D (1993) Interpretation as abduction. Artif Intel 63(1–2):69–142CrossRefGoogle Scholar
  21. 21.
    Hopcroft JE, Motwani R, Ullman JD (2000) Introduction to automata theory, languages, and computation. Pearson, LondonMATHGoogle Scholar
  22. 22.
    Horn LR, Ward G (2006) The handbook of pragmatics. Blackwell, OxfordCrossRefGoogle Scholar
  23. 23.
    Inclezan D (2013) An application of ASP to the field of second language acquisition. In: Cabalar P, Son TC (eds) Logic programming and nonmonotonic rteasoning (LPNMR). Springer, Berlin, Heidelberg, pp 395–400CrossRefGoogle Scholar
  24. 24.
    Kamp H, Reyle U (1993) From discourse to logic: introduction to model theoretic semantics of natural language, formal logic and discourse representation theory. Studies in linguistics and philosophy. Kluwer, DordrechtGoogle Scholar
  25. 25.
    Kazmi M, Schüller P (2016) Inspire at SemEval-2016 Task 2: interpretable semantic textual similarity alignment based on answer set programming. In: Proceedings of the 10th international workshop on semantic evaluation (SemEval). Association for Computational Linguistics, pp 1109–1115Google Scholar
  26. 26.
    Kazmi M, Schüller P, Saygın Y (2017) Improving Scalability of Inductive Logic Programming via Pruning and Best-Effort Optimisation. Expert Syst Appl 87:291–303CrossRefGoogle Scholar
  27. 27.
    Khandelwal P, Zhang S, Sinapov J, Leonetti M, Thomason J, Yang F, Gori I, Svetlik M, Khante P, Lifschitz V, Aggarwal J, Mooney R, Stone P (2017) BWIBots: A platform for bridging the gap between AI and human-robot interaction research. Int J Rob Res 36(5–7):635–659CrossRefGoogle Scholar
  28. 28.
    Kracht M (2003) The mathematics of language. Studies in generative grammar, vol 63. Walter De Gruyter, BerlinMATHGoogle Scholar
  29. 29.
    Levesque HJ, Davis E, Morgenstern L (2012) The Winograd schema challenge. In: Proceedings of the thirteenth international conference on principles of knowledge representation and reasoning (KR). AAAI Press, pp 552–561Google Scholar
  30. 30.
    Lierler Y, Lifschitz V (2013) Logic programs vs. first-order formulas in textual inference. In:: Proceedings of the 10th international conference on computational semantics (IWCS), short papers. Association for Computational Linguistics, pp 340–346Google Scholar
  31. 31.
    Lierler Y, Schüller P (2012) Parsing combinatory categorial grammar via planning in answer set programming. In: Erdem E, Lee J, Lierler Y, Pearce D (eds) Correct reasoning. Springer, Berlin, Heidelberg, pp 436–453CrossRefGoogle Scholar
  32. 32.
    Liu Q, Gao Z, Liu B, Zhang Y (2013) A logic programming approach to aspect extraction in opinion mining. In: IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT). IEEE, pp 276–283Google Scholar
  33. 33.
    Martin JH, Jurafsky D (2000) Speech and language processing. Pearson, LondonGoogle Scholar
  34. 34.
    Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41CrossRefGoogle Scholar
  35. 35.
    Mitra A, Baral C (2016) Addressing a question answering challenge by combining statistical methods with inductive rule learning and reasoning. In: AAAI, pp 2779–2785Google Scholar
  36. 36.
    Muggleton S, De Raedt L, Poole D, Bratko I, Flach P, Inoue K, Srinivasan A (2012) ILP turns 20: Biography and future challenges. Mach Learn 86(1):3–23MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Muggleton SH, Lin D, Pahlavi N, Tamaddoni-Nezhad A (2014) Meta-interpretive learning: application to grammatical inference. Mach Learn 94(1):25–49MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Ray O (2009) Nonmonotonic abductive inductive learning. J Appl Logic 7:329–340MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Schaub T, Woltran S (2018) Answer set programming unleashed! Künstliche Intelligenz (this issue)Google Scholar
  40. 40.
    Scherl R, Inclezan D, Gelfond M (2010) Automated inference of socio-cultural information from natural language conversations. In: IEEE second international conference on social computing (SocialCom). IEEE, pp 480–487Google Scholar
  41. 41.
    Schüller P (2013) Flexible combinatory categorial grammar parsing using the CYK algorithm and answer set programming. In: Cabalar P, Son TC (eds) Logic Programming and Nonmonotonic Reasoning (LPNMR). Springer, Berlin, Heidelberg, pp 499–511CrossRefGoogle Scholar
  42. 42.
    Schüller P (2014) Tackling Winograd schemas by formalizing relevance theory in knowledge graphs. In: Fourteenth International conference on the principles of knowledge representation and reasoning (KR). AAAI Press, pp 358–367Google Scholar
  43. 43.
    Schüller P (2016) Modeling variations of first-order horn abduction in answer set programming. Fundamenta Informaticae 149:159–207MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Schüller P (2018) Adjudication of coreference annotations via Answer Set optimization. J Exp Theor Artif Intell (forthcoming).  https://doi.org/10.1080/0952813X.2018.1456793 MATHGoogle Scholar
  45. 45.
    Sharma A, Vo NH, Aditya S, Baral C (2015) Towards addressing the Winograd Schema Challenge—building and using a semantic parser and a knowledge hunting module. In: Proceedings of the 24th international joint conference on artificial intelligence (IJCAI). AAAI Press, pp 1319–1325Google Scholar
  46. 46.
    Sleator D, Temperley D (1993) Parsing english with a link grammar. In: International Workshop on Parsing Technologies. arXiv:cmp-lg/9508004
  47. 47.
    Steedman M (2000) The syntactic process. MIT Press, CambridgeMATHGoogle Scholar
  48. 48.
    Tari L, Anwar S, Liang S, Cai J, Baral C (2010) Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 26:i547–i553CrossRefGoogle Scholar
  49. 49.
    Todorova Y, Gelfond M (2012) Toward question answering in travel domains. In: Erdem E, Lee J, Lierler Y, Pearce D (eds) Correct reasoning. Springer, Berlin, Heidelberg, pp 311–326CrossRefGoogle Scholar
  50. 50.
    Toivanen JM, Järvisalo M, Toivonen H (2013) Harnessing constraint programming for poetry composition. In: Proceedings of the fourth international conference on computational creativity, pp 160–167Google Scholar
  51. 51.
    Turing A (1950) Computing machinery and intelligence. Mind 59:433–460MathSciNetCrossRefGoogle Scholar
  52. 52.
    Vo NH, Mitra A, Baral C (2015) The NL2KR platform for building natural language translation systems. In: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing. Association for Computational Linguistics, pp 899–908Google Scholar
  53. 53.
    Voorhees EM (1999) The TREC-8 question answering track report. In: Proceedings of the 8th text retrieval conference (TREC), pp 77–82Google Scholar
  54. 54.
    Weston J, Bordes A, Chopra S, Mikolov T (2015) Towards AI-complete question answering: a set of prerequisite toy tasks. arXiv:1502.05698

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute für Logic and ComputationTechnische Universität WienViennaAustria

Personalised recommendations