KI - Künstliche Intelligenz

, Volume 32, Issue 2–3, pp 207–208 | Cite as

Answer Set Programming Applied to Coreference Resolution and Semantic Similarity

  • Peter Schüller
Project Report


We describe two research projects about solving problems in Computational Linguistics using Answer Set Programming, and we conclude with several lessons learned from these projects.



I am grateful to my collaborators and to my students. OmSieve and Inspire have been supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grants 114E430 and 114E777.


  1. 1.
    Schaub T, Woltran S (2018) Answer set programming unleashed! Künstliche Intelligenz (forthcoming)Google Scholar
  2. 2.
    Agirre E, Gonzalez-Agirre A, Lopez-Gazpio I, Maritxalar M, Rigau G, Uria L (2016) SemEval-2016 Task 2: Interpretable Semantic Textual Similarity. In: SemEval, pp 512–524Google Scholar
  3. 3.
    Alviano M, Dodaro C, Faber W, Leone N, Ricca F (2013) WASP: a native ASP solver based on constraint learning. In: LPNMR, pp 54–66Google Scholar
  4. 4.
    Alviano M, Dodaro C, Marques-Silva J, Ricca F (2015) Optimum stable model search: algorithms and implementation. J Logic Comput, exv061Google Scholar
  5. 5.
    Banjade R, Niraula NB, Maharjan N, Rus V, Stefanescu D, Lintean M, Gautam D (2015) NeRoSim: a system for measuring and interpreting semantic textual similarity. In: SemEval, pp 164–171Google Scholar
  6. 6.
    Cuteri B, Dodaro C, Ricca F, Schüller P (2017) Constraints, lazy constraints, or propagators in ASP solving: an empirical analysis. Theor Pract Log Prog 17:780–799MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gebser M, Kaminski R, Kaufmann B, Ostrowski M, Schaub T, Wanko P (2016) Theory solving made easy with Clingo 5. In: ICLP TC. OASIcs, vol 52, pp 2:1–2:15Google Scholar
  8. 8.
    Hobbs JR, Stickel M, Martin P, Edwards D (1993) Interpretation as abduction. Artif Intell 63(1–2):69–142CrossRefGoogle Scholar
  9. 9.
    Kazmi M, Schüller P (2016) Inspire at SemEval-2016 Task 2: interpretable semantic textual similarity alignment based on Answer Set Programming. In: SemEval, pp 1109–1115Google Scholar
  10. 10.
    Kazmi M, Schüller P, Saygin Y (2017) Improving scalability of inductive logic programming via pruning and best-effort optimisation. Expert Syst Appl 87:291–303CrossRefGoogle Scholar
  11. 11.
    Lee H, Chang A, Peirsman Y, Chambers N, Surdeanu M, Jurafsky D (2013) Deterministic coreference resolution based on entity-centric. Precision-Ranked Rules. Comput Linguist 39(4):885–916CrossRefGoogle Scholar
  12. 12.
    Lierler Y, Schüller P (2013) Towards a tight integration of syntactic parsing with semantic disambiguation by means of declarative programming. In: IWCS, pp 383–389Google Scholar
  13. 13.
    Müller C, Strube M (2006) Multi-level annotation of linguistic data with MMAX2. Corpus technology and language pedagogy: new resources, new tools, new methods. Peter Lang, Bern, pp 197–214Google Scholar
  14. 14.
    Ray O (2009) Nonmonotonic abductive inductive learning. J Appl Logic 7:329–340MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schüller P (2016) Modeling variations of first-order horn abduction in answer set programming. Fundam Inform 149:159–207MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schüller P (2018) Adjudication of coreference annotations via answer set optimization. J Exp Theor Artif Intell (forthcoming)Google Scholar
  17. 17.
    Schüller P, Cingilli K, Tunçer F, Sürmeli BG, Pekel A, Karatay AH, Karakas HE (2017) Marmara Turkish coreference corpus and coreference resolution baseline. arXiv:1706.01863
  18. 18.
    Versley Y, Ponzetto SP, Poesio M, Eidelman V, Jern A, Smith J, Yang X, Moschitti A (2008) BART: a modular toolkit for coreference resolution. In: ACL, pp 9–12Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marmara UniversityIstanbulTurkey
  2. 2.Technische Universität WienViennaAustria

Personalised recommendations