KI - Künstliche Intelligenz

, Volume 32, Issue 1, pp 55–60 | Cite as

Societal Implications of Big Data

  • Karolin Kappler
  • Jan-Felix Schrape
  • Lena Ulbricht
  • Johannes WeyerEmail author
Technical Contribution


Modern societies have developed a variety of technologies and techniques to identify, measure and influence people and objects. Smart devices such as smartphones and wearables assist and track their users in every aspect of life. Large amounts of data are collected, evaluated and interconnected to analyse the behaviour of individuals, social groups and collectives. By discussing recent practices of self-tracking as well of real-time control of complex systems, we will show that real-time analysis and feedback loops increasingly foster a society of (self-)control. Data scientists and social scientists should work together to develop the concepts of regulation, which are needed to cope with the challenges and risks of big data.


  1. 1.
    McLuhan M (1962) The Gutenberg galaxy. University of Toronto Press, TorontoGoogle Scholar
  2. 2.
    Umesao T (1963) Information industry theory: dawn of the coming era of the ectodermal industry. Hoso Asahi 1/1961:4–17Google Scholar
  3. 3.
    Miller AR (1967) The assault on privacy. University of Michigan Press, Ann ArborGoogle Scholar
  4. 4.
    Toffler A (1970) Future shock. Bantam Books, New YorkGoogle Scholar
  5. 5.
    Becker HB (1986) Can users really absorb data at today’s rates? Tomorrow’s? Data Commun 15(8):177–193Google Scholar
  6. 6.
    Seyfert R, Roberge J (eds) (2017) Algorithmic cultures: essays on meaning, performance and new technologies. Routledge, London/New YorkGoogle Scholar
  7. 7.
    Kosinski M, Stillwell D, Graepel T (2013) Private traits and attributes are predictable from digital records of human behavior. Proc Natl Acad Sci 110(15):5802–5805CrossRefGoogle Scholar
  8. 8.
    Dolata D, Schrape JF (2016) Masses, crowds, communities, movements: collective action in the internet age. Soc Mov Stud 15(1):1–18CrossRefGoogle Scholar
  9. 9.
    McFarland DA, Lewis K, Goldberg A (2016) Sociology in the era of Big Data: the ascent of forensic social science. Am Sociol 47(1):12–35CrossRefGoogle Scholar
  10. 10.
    Anderson C (2008) The end of theory: the data deluge makes the scientific method obsolete. Wired 16(7). Accessed 10 Dec 2017
  11. 11.
    Lupton D (2016) The quantified self. Polity Press, Cambridge and MaldenGoogle Scholar
  12. 12.
    Ruckenstein M, Pantzar M (2017) Beyond the quantified self: thematic exploration of a dataistic paradigm. New Media Society 19(3):401–418CrossRefGoogle Scholar
  13. 13.
    Didžiokaitė G, Saukko P, Greiffenhagen C (2017) The mundane experience of everyday calorie trackers: beyond the metaphor of quantified self. New Media Soc. Google Scholar
  14. 14.
    Selke S (2016) Rationale Diskriminierung durch Lifelogging—Die Optimierung des Individuums auf Kosten des Solidargefüges? In: Andelfinger VP, Hänisch T (eds) Die Optimierung des Individuums—wie weit wollen, sollen, dürfen wir gehen? Springer, Berlin, pp 53–71Google Scholar
  15. 15.
    Selke S (2014) Lifelogging: Wie die digitale Selbstvermessung unsere Gesellschaft verändert. Ullstein eBooksGoogle Scholar
  16. 16.
    Gerlek S, Kappler KE, Noji E (2017) Digitale Medien in leiblichen Praktiken. In Rebane G (ed) Identität und kulturelle Praktiken im digitalen Zeitalter. Könighausen & Neumann, WürzburgGoogle Scholar
  17. 17.
    Vormbusch U (2016) Taxonomien des Selbst. Zur Hervorbringung subjektbezogener Bewertungsordnungen im Kontext ökonomischer und kultureller Unsicherheit. In: Duttweiler S, Gugutzer R, Passoth JH, Strübing J (eds) Leben nach Zahlen. Self-Tracking als Optimierungsprojekt? Transcript, Bielefeld, pp 45–62Google Scholar
  18. 18.
    Weyer J (2014) Einleitung: Netzwerke in der mobilen Echtzeitgesellschaft. In: Weyer J (ed) Soziale Netzwerke. Konzepte und Methoden der sozialwissenschaftlichen Netzwerkforschung, 3rd edn. Oldenbourg, München, pp 3–37CrossRefGoogle Scholar
  19. 19.
    Rochlin GI (1997) Trapped in the net. The unanticipated consequences of computerization. Princeton, Princeton UPGoogle Scholar
  20. 20.
    Lessig L (2006) Code: version 2.0. Bacis Books, New YorkGoogle Scholar
  21. 21.
    Saurwein F, Just N, Latzer M (2015) Governance of algorithms: options and limitations. Info 17(6):35–49. CrossRefGoogle Scholar
  22. 22.
    Ohm P (2014) Changing the rules: general principles for data use and analysis. In: Lane J, Stodden V, Bender S, Nissenbaum H (eds) Privacy, big data, and the public good. Cambridge University Press, New York, pp 96–111CrossRefGoogle Scholar
  23. 23.
    Barocas S, Nissenbaum H (2014) Big Data’s end run around anonymity and consent. In: Lane J, Stodden V, Bender S, Nissenbaum H (eds) Privacy, Big Data, and the public good. Cambridge University Press, Cambridge, pp 44–75CrossRefGoogle Scholar
  24. 24.
    Ulbricht L, Haunss S, Hofmann J, Klinger U, Passoth JH, Pentzold C, Schneider I, Strassheim H, Voß JP (2018) Dimensionen von Big Data: eine politikwissenschaftliche Systematisierung”. In: Heil R, Kolany­Raiser B, Orwat C (eds) Big Data und Gesellschaft. Eine multidisziplinäre Annäherung. Springer, Wiesbaden (forthcoming) Google Scholar
  25. 25.
    Ulbricht L (2017) Machtkämpfe um Big Data: Bürger und Konsumenten müssen geschützt werden. WZB-Mitteilungen 155:18–21Google Scholar
  26. 26.
    Foster JB, McChesney RW (2011) The internet’s unholy marriage to capitalism. Mon Rev 62(10):1–30CrossRefGoogle Scholar
  27. 27.
    Roßnagel A, Geminn C, Jandt S, Richter P (2016) Datenschutzrecht 2016 “Smart” genug für die Zukunft?: Ubiquitous computing und Big Data als Herausforderungen des Datenschutzrechts. Accessed 10 Dec 2017
  28. 28.
    Lewandowski D (2014) Why we need an independent index of the web. In: König R, Rasch M (eds) Inc Reader: vol 9. Society of the query reader. Reflections on web search. Inst. of Network Cultures, Amsterdam, pp 49–58Google Scholar
  29. 29.
    Hull G (2015) Successful failure: what Foucault can teach us about privacy self-management in a world of Facebook and big data. Ethics Inf Technol 17(2):89–101. MathSciNetCrossRefGoogle Scholar
  30. 30.
    Dijck J (2016) #AoIR2016: opening keynote “The Platform Society” by José van Dijck. Accessed 10 Dec 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.FernUniversität in HagenHagenGermany
  2. 2.University of StuttgartStuttgartGermany
  3. 3.WZB Berlin Social Science CenterBerlinGermany
  4. 4.TU Dortmund UniversityDortmundGermany

Personalised recommendations