KI - Künstliche Intelligenz

, Volume 31, Issue 3, pp 273–281 | Cite as

“KogniChef”: A Cognitive Cooking Assistant

  • Alexander Neumann
  • Christof Elbrechter
  • Nadine Pfeiffer-Leßmann
  • Risto Kõiva
  • Birte Carlmeyer
  • Stefan Rüther
  • Michael Schade
  • André Ückermann
  • Sven Wachsmuth
  • Helge J. Ritter
Research Project

Abstract

Cooking is a complex activity of daily living that requires intuition, coordination, multitasking and time-critical planning abilities. We introduce KogniChef, a cognitive cooking assistive system that provides users with interactive, multi-modal and intuitive assistance while preparing a meal. Our system augments common kitchen appliances with a wide variety of sensors and user-interfaces, interconnected internally to infer the current state in the cooking process and to provide smart guidance. Our vision is to endow the system with the processing and the reasoning skills needed to guide a cook through recipes, similar to the assistance an expert chef would be able to provide on-site.

Keywords

Smart home Assist Cooking Assisted living Human machine interaction 

References

  1. 1.
    WeltN24 GmbH (2016) Thermomix schafft es im Test nur auf Platz vier, March 2015. http://www.welt.de/vermischtes/article149301204/Thermomix-schafft-es-im-Test-nur-auf-Platz-vier.html. Accessed 26 Sept 2016
  2. 2.
    Barnett J et al (2015) State chart xml (scxml): state machine notation for control abstraction. Technical report, Massachusetts, USAGoogle Scholar
  3. 3.
    Beetz M et al (2007) The assistive kitchen—a demonstration scenario for cognitive technical systems. In: Proceedings of the 4th COE workshop on human adaptive mechatronics (HAM)Google Scholar
  4. 4.
    Blasco R et al (2014) A smart kitchen for ambient assisted living. Sensors 14(1):1629CrossRefGoogle Scholar
  5. 5.
    Carlmeyer B et al (2014) towards closed feedback loops in HRI: integrating InproTK and PaMini. In: Workshop on multimodal, multi-party, real-world human-robot interaction, pp 1–6. ACMGoogle Scholar
  6. 6.
    Ficocelli M, Nejat G (2012) The design of an interactive assistive kitchen system. Assist Technol 24(4):246–258CrossRefGoogle Scholar
  7. 7.
    Friedhof S, Henne M (2016) Nutzerbeteiligung bei der Ausgestaltung technischer Assistenzsysteme. Erste Erkenntnisse aus dem Innovationscluster “KogniHome”. Zukunft LebensräumeGoogle Scholar
  8. 8.
    Grudin J (1990) The computer reaches out: the historical continuity of interface design. In: Proceedings of the SIGCHI conference on Human factors in computing systems Empowering people—CHI ’90, pp 261–268, New York, New York, USA. ACM PressGoogle Scholar
  9. 9.
    Gu H, Wang D (2009) A content-aware Fridge based on RFID in smart home for home-healthcare. In: Advanced communication technology, 2009. ICACT 2009. 11th international conference on, volume 02, pp 987–990Google Scholar
  10. 10.
    Hamada R et al (2005) Cooking navi: assistant for daily cooking in kitchen. In: Proceedings of the 13th annual ACM international conference on multimedia, MULTIMEDIA ’05, pp 371–374, New York, NY, USA. ACMGoogle Scholar
  11. 11.
    Xuedong H et al (1993) The SPHINX-II speech recognition system: an overview. Comput Speech Lang 7(2):137–148CrossRefGoogle Scholar
  12. 12.
    ISO (2010) ISO 9241-210:2010—ergonomics of human-system interaction—part 210: human-centred design for interactive systemsGoogle Scholar
  13. 13.
    Johnson J (2010) Designing with the mind in mind. Morgan Kaufmann, Burlington, pp 11–24CrossRefGoogle Scholar
  14. 14.
    Müller G, Bergmann R (2014) Compositional adaptation of cooking recipes using workflow streams. In: Computer cooking contest, workshop proceedings ICCBR 2014. SpringerGoogle Scholar
  15. 15.
    Reichel S et al (2011) Mampf: an intelligent cooking agent for zoneless stoves. In: Intelligent environments (IE), 2011 7th international conference on, pp 171–178. IEEEGoogle Scholar
  16. 16.
    Sato A et al (2014) Mimicook: a cooking assistant system with situated guidance. In: Proceedings of the 8th international conference on tangible, embedded and embodied interaction, pp 121–124. ACMGoogle Scholar
  17. 17.
    Schröder M, Trouvain J (2003) The german text-to-speech synthesis system mary: a tool for research, development and teaching. Int J Speech Technol 6(4):365–377CrossRefGoogle Scholar
  18. 18.
    Ückermann A et al (2012) 3d scene segmentation for autonomous robot grasping. In: 2012 IEEE/RSJ international conference on intelligent robots and systems, pp 1734–1740. IEEEGoogle Scholar
  19. 19.
    Ückermann A et al (2014) Real-time hierarchical scene segmentation and classification. In: 2014 IEEE-RAS international conference on humanoid robots, pp 225–231. IEEEGoogle Scholar
  20. 20.
    Warentest P (2015) Küchenmaschinen mit Kochfunktion. test.de, 12/2015, 2015. https://www.test.de/Kuechenmaschinen-mit-Kochfunktion-Drei-von-neun-sind-gut-4947836-0/. Accessed 26 Sept 2016
  21. 21.
    Wienke J, Wrede S (2011) A middleware for collaborative research in experimental robotics. In: IEEE/SICE international symposium on system integration (SII2011), Kyoto, Japan. IEEE, IEEEGoogle Scholar
  22. 22.
    You E (2016) Vue.js—reactive components for modern web interfaces. https://vuejs.org/guide/overview.html. Accessed 27 Sept 2016

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alexander Neumann
    • 1
  • Christof Elbrechter
    • 1
  • Nadine Pfeiffer-Leßmann
    • 1
  • Risto Kõiva
    • 1
  • Birte Carlmeyer
    • 1
  • Stefan Rüther
    • 1
  • Michael Schade
    • 1
  • André Ückermann
    • 1
  • Sven Wachsmuth
    • 1
  • Helge J. Ritter
    • 1
  1. 1.Cluster of Excellence Cognitive Interaction TechnologyBielefeld UniversityBielefeldGermany

Personalised recommendations