KI - Künstliche Intelligenz

, Volume 31, Issue 1, pp 9–13 | Cite as

Many Facets of Reasoning Under Uncertainty, Inconsistency, Vagueness, and Preferences: A Brief Survey

Survey

Abstract

In this paper, we give an introduction to reasoning under uncertainty, inconsistency, vagueness, and preferences in artificial intelligence (AI), including some historic notes and a brief survey to previous approaches.

Keywords

Uncertainty Inconsistency Vagueness Preferences Nonmonotonic reasoning Probability theory Possibility theory Fuzzy logic Ontology languages Description logics Argumentation 

References

  1. 1.
    Alchourrón C, Gärdenfors P, Makinson D (1985) On the logic of theory change: partial meet contraction and revision functions. J Symb Logic 50(2):510–530MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andreka H, Ryan M, Schobbens PY (2002) Operators and laws for combining preference relations. J Logic Comput 12(1):13–53MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arenas M, Bertossi LE, Chomicki J (1999) Consistent query answers in inconsistent databases. In: Proc. of PODS, pp 68–79Google Scholar
  4. 4.
    Baader F, Borgwardt S, Peñaloza R (2015) On the decidability status of fuzzy \({\cal{ALC}}\) with general concept inclusions. J Philos Logic 44(2):117–146Google Scholar
  5. 5.
    Bell DA, Qi G, Liu W (2007) Approaches to inconsistency handling in description-logic based ontologies. In: OTM workshops, (2), pp 1303–1311Google Scholar
  6. 6.
    Besnard P, Hunter A (2008) Elements of argumentation. MIT Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Bienvenu M (2011) First-order expressibility results for queries over inconsistent DL-Lite knowledge bases. In: Proc. of DLGoogle Scholar
  8. 8.
    Bienvenu M (2012) On the complexity of consistent query answering in the presence of simple ontologies. In: Proc. of AAAI, pp 705–711Google Scholar
  9. 9.
    Borgida A, Walsh TJ, Hirsh H (2005) Towards measuring similarity in description logics. In: Proc. of DLGoogle Scholar
  10. 10.
    Brewka G, Ellmauthaler S, Gonçalves R, Knorr M, Leite J, Pührer J (2016) Inconsistency management in reactive multi-context systems. In: Proc. of JELIA, pp 529–535Google Scholar
  11. 11.
    Chomicki J (2007) Consistent query answering: five easy pieces. In: Proc. of ICDT, pp 1–17Google Scholar
  12. 12.
    da Costa PCG, Laskey KB (2006) PR-OWL: a framework for probabilistic ontologies. In: Proc. of FOIS, pp 237–249Google Scholar
  13. 13.
    Dubois D, Prade H (1994) Can we enforce full compositionality in uncertainty calculi? In: Proc. of AAAI, pp 149–154Google Scholar
  14. 14.
    Dubois D, Prade H (2001) Possibility theory, probability theory and multiple-valued logics: a clarification. Ann Math Artif Intell 32(1–4):35–66MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dung P (1995) On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif Intell 77:321–357MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fermé E, Hansson S (2011) AGM 25 years: twenty-five years of research in belief change. J Philos Logic 40(2):295–331MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gärdenfors P (1988) Knowledge in flux: modeling the dynamics of epistemic states. MIT Press, CambridgeMATHGoogle Scholar
  18. 18.
    Gärdenfors P (1992) Belief revision and nonmonotonic logic: two sides of the same coin? In: Proc. of ECAI, pp 768–773Google Scholar
  19. 19.
    Gärdenfors P, Makinson D (1988) Revisions of knowledge systems using epistemic entrenchment. In: Proc. of TARK, pp 83–95Google Scholar
  20. 20.
    Gebser M, Kaminski R, Kaufmann B, Schaub T (2013) Answer set solving in practice. Morgan and Claypool, San RafaelMATHGoogle Scholar
  21. 21.
    Gelfond M, Leone N (2002) Logic programming and knowledge representation–the A-Prolog perspective. Artif Intell 138:3–38MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Haase P, Harmelen FV, Huang Z, Stuckenschmidt H, Sure Y (2005) A framework for handling inconsistency in changing ontologies. In: Proc. of ISWC, pp 353–367Google Scholar
  23. 23.
    Hansson S (1999) A textbook of belief dynamics. Kluwer Academic Publishers, DordrechtCrossRefMATHGoogle Scholar
  24. 24.
    Heinsohn J (1994) Probabilistic description logics. In: Proc. of UAI, pp 311–318Google Scholar
  25. 25.
    Horrocks I, Sattler U, Tobies S (2000) Reasoning with individuals for the description logic \({\cal{SHIQ}}\). In: Proc. of CADE, pp 482–496Google Scholar
  26. 26.
    Jaeger M (1994) Probabilistic reasoning in terminological logics. In: Proc. of KR, pp 305–316Google Scholar
  27. 27.
    Jaynes E (1983) Papers on probability, statistics and statistical physics. D. Reidel Publishing Company, DordrechtMATHGoogle Scholar
  28. 28.
    Jung JC, Lutz C (2012) Ontology-based access to probabilistic data with OWL QL. In: Proc. of ISWC, part I, pp 182–197Google Scholar
  29. 29.
    Kern-Isberner G (2001) Conditionals in nonmonotonic reasoning and belief revision. In: LNAI 2087. Springer, BerlinGoogle Scholar
  30. 30.
    Kern-Isberner G (2004) A thorough axiomatization of a principle of conditional preservation in belief revision. Ann Math Artif Intell 40(1/2):127–164MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Koller D, Levy A, Pfeffer A (1997) P-Classic: a tractable probabilistic description logic. In: Proc. of AAAI, pp 390–397Google Scholar
  32. 32.
    Kraus S, Lehmann D, Magidor M (1990) Nonmonotonic reasoning, preferential models and cumulative logics. Artif Intell 44:167–207MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Lakemeyer G, Erdem E, Kern-Isberner G, Schaub T (2015) Workshop on Hybrid reasoning at IJCAI-2015. https://www.hybrid-reasoning.org/ijcai15_ws
  34. 34.
    Lembo D, Lenzerini M, Rosati R, Ruzzi M, Savo DF (2010) Inconsistency-tolerant semantics for description logics. In: Proc. of RR, pp 103–117Google Scholar
  35. 35.
    Lembo D, Lenzerini M, Rosati R, Ruzzi M, Savo DF (2011) Query rewriting for inconsistent DL-Lite ontologies. In: Proc. of RR, pp 155–169Google Scholar
  36. 36.
    Leone N, Eiter T, Faber W, Calimeri F, Dell’Armi T, Eiter T, Gottlob G, Ianni G, Ielpa G, Koch C, Perri S, Polleres A (2002) The DLV system. In: Proc. of JELIA, pp 537–540Google Scholar
  37. 37.
    Lukasiewicz T (2008) Expressive probabilistic description logics. Artif Intell 172(6/7):852–883MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Lukasiewicz T, Martinez MV, Simari GI (2012) Inconsistency handling in Datalog+/– ontologies. In: Proc. of ECAI, pp 558–563Google Scholar
  39. 39.
    Lukasiewicz T, Straccia U (2008) Managing uncertainty and vagueness in description logics for the Semantic Web. J Web Semant 6(4):291–308CrossRefGoogle Scholar
  40. 40.
    Lutz C, Schröder L (2010) Probabilistic description logics for subjective uncertainty. In: Proc. of KR, pp 393–403Google Scholar
  41. 41.
    Maedche A, Staab S (2002) Measuring similarity between ontologies. In: Proc. of EKAW, pp 251–263Google Scholar
  42. 42.
    Maier F, Ma Y, Hitzler P (2013) Paraconsistent OWL and related logics. Semant Web 4(4):395–427Google Scholar
  43. 43.
    Makinson D (1989) General theory of cumulative inference. In: Proc. of NMR, pp 1–18Google Scholar
  44. 44.
    McDermott D, Doyle J (1980) Non-monotonic logic I. Artif Intell 13:41–72CrossRefMATHGoogle Scholar
  45. 45.
    Moore R (1985) A formal theory of knowledge and action. In: Hobbs J, Moore R (eds) Formal theories of the commonsense world. Ablex Publishing Corporation, Norwood, pp 319–358Google Scholar
  46. 46.
    Neves R, Bonnefon J, Raufaste E (2002) An empirical test of patterns for nonmonotonic inference. Ann Math Artif Intell 34(1–3):107–130MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Nguyen LA, Szalas A (2010) Three-valued paraconsistent reasoning for semantic web agents. In: Proc. of KES-AMSTA, pp 152–162Google Scholar
  48. 48.
    Paris J (1994) The uncertain reasoner’s companion—a mathematical perspective. Cambridge University Press, CambridgeGoogle Scholar
  49. 49.
    Paris J (1999) Common sense and maximum entropy. Synthese 117:75–93MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Reiter R (1980) A logic for default reasoning. Artif Intell 13:81–132MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Rosati R (2011) On the complexity of dealing with inconsistency in description logic ontologies. In: Proc. of IJCAI, pp 1057–1062Google Scholar
  52. 52.
    Spohn W (1988) Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper W, Skyrms B (eds) Causation in decision, belief change, and statistics, II. Kluwer Academic Publishers, Dordrecht, pp 105–134Google Scholar
  53. 53.
    Spohn W (2012) the laws of belief: ranking theory and its philosophical applications. Oxford University Press, OxfordGoogle Scholar
  54. 54.
    Straccia U (2001) Reasoning within fuzzy description logics. J Artif Intell Res 14:137–166MathSciNetMATHGoogle Scholar
  55. 55.
    Straccia U (2012) Top-k retrieval for ontology mediated access to relational databases. Inf Sci 198:1–23MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Tresp C, Molitor R (1998) A description logic for vague knowledge. In: Proc. of ECAI, pp 361–365Google Scholar
  57. 57.
    van der Torre LWN (1999) Defeasible goals. In: Proc. of ECSQARU, pp 274–385Google Scholar
  58. 58.
    Yen J (1991) Generalizing term subsumption languages to fuzzy logic. In: Proc. of IJCAI, pp 472–477Google Scholar
  59. 59.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Fakultät für Informatik, TU DortmundDortmundGermany
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations