KI - Künstliche Intelligenz

, Volume 31, Issue 2, pp 151–159 | Cite as

Landmark Extraction from Web-Harvested Place Descriptions

Technical Contribution
  • 173 Downloads

Abstract

Large corpora of place descriptions provide abundant human spatial knowledge, different from the geometry-based information stored in current GIS. These place descriptions, used in everyday communication, frequently refer to landmarks. This paper suggests a model for extracting landmarks from web-harvested place descriptions, considering the landmark’s cognitive significance. The model allows landmarks to be extracted according to different contexts via web harvesting and text classification methods. In this work, an implementation of our approach is used to extract context-based landmarks for a target area—Melbourne in Australia.

Keywords

Landmark extraction Spatial information Human spatial knowledge Textual descriptions Web harvesting 

References

  1. 1.
    Abdelkader A, Hand E, Samet H (2015) Brands in newsstand: spatio-temporal browsing of business news. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems, ACM, New York, NY, USA, GIS ’15, pp 1–4Google Scholar
  2. 2.
    Adams B, McKenzie G, Gahegan M (2015) Frankenplace: interactive thematic mapping for ad hoc exploratory search. Proceedings of the 24th international conference on World Wide Web. ACM, New York, NY, USA, pp 12–22Google Scholar
  3. 3.
    Caduff D, Timpf S (2008) On the assessment of landmark salience for human navigation. Cogn Process 9(4):249–267CrossRefGoogle Scholar
  4. 4.
    Couclelis H, Golledge RG, Gale N, Tobler W (1987) Exploring the anchor-point hypothesis of spatial cognition. J Environ Psychol 7(2):99–122CrossRefGoogle Scholar
  5. 5.
    Denis M, Pazzaglia F, Cornoldi C, Bertolo L (1999) Spatial discourse and navigation: an analysis of route directions in the city of Venice. Appl Cogn Psychol 13(2):145–174CrossRefGoogle Scholar
  6. 6.
    Duckham M, Winter S, Robinson M (2010) Including landmarks in routing instructions. J Locat Based Serv 4(1):28–52CrossRefGoogle Scholar
  7. 7.
    Elias B (2003) Extracting landmarks with data mining methods. In: Kuhn W, Worboys M, Timpf S (eds) Spatial information theory, lecture notes in computer science, vol 2825. Springer, Berlin, pp 375–389Google Scholar
  8. 8.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor 11(1):10–18CrossRefGoogle Scholar
  9. 9.
    Khan A, Vasardani M, Winter S (2013) Extracting spatial information from place descriptions. In: Proceedings of the first ACM SIGSPATIAL international workshop on computational models of place, New York, NY, COMP ’13, pp 62–69Google Scholar
  10. 10.
    Kim J, Vasardani M, Winter S (2015) Harvesting large corpora for generating place graphs. In: Bertel S, Kiefer P, Klippel A, Scheider S, Thrash T (eds) International workshop on cognitive engineering for spatial information processes (CESIP), in conjunction with COSIT 2015Google Scholar
  11. 11.
    Kim J, Vasardani M, Winter S (2016) Similarity matching for integrating spatial information extracted from place descriptions. Int J Geograph Inf Sci, Taylor & Francis LtdGoogle Scholar
  12. 12.
    Liu F, Vasardani M, Baldwin T (2014) Automatic identification of locative expressions from social media text: a comparative analysis. In: Proceedings of the 4th international workshop on location and the web. ACM, Shanghai, China, pp 9–16Google Scholar
  13. 13.
    Loh WY (2008) Classification and regression tree methods. In: Ruggeri F, Kenett R, Faltin FW (eds) Encyclopedia of statistics in quality and reliability. Wiley, pp 315–323Google Scholar
  14. 14.
    Lynch K (1960) The image of the city. MIT Press, Cambridge, MAGoogle Scholar
  15. 15.
    Manning CD, Raghavan P, Schütze H et al (2008) Introduction to information retrieval, vol 1. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  16. 16.
    Mário JS, Bruno M, Marcirio C, Ana Paula A, Nuno C (2006) Adding geographic scopes to web resources. Comput Environ Urban Syst 30(4):378–399CrossRefGoogle Scholar
  17. 17.
    Mukherjea S, Foley J (1995) Visualizing the world-wide web with the navigational view builder. Comput Netw ISDN Syst 27(6):1075CrossRefGoogle Scholar
  18. 18.
    Murai Y, Okada M, Hashimoto K (2011) Characteristics of human route descriptions and their improvement by machine landmark extraction. Third international IEEE conference on awareness science and technology. Dalian, China, pp 438–443Google Scholar
  19. 19.
    Newman MEJ (2010) Networks: an introduction. Oxford University Press, New YorkCrossRefMATHGoogle Scholar
  20. 20.
    Purves R (2011) Methods, examples and pitfalls in the exploitation of the geospatial web. In: Hesse-Biber S (ed) The handbook of emergent technologies in social research. Oxford University Press, New York, pp 592–622Google Scholar
  21. 21.
    Quesnot T, Roche S (2014) Measure of landmark semantic salience through geosocial data streams. ISPRS Int J Geo-Inf 4(1):1–31CrossRefGoogle Scholar
  22. 22.
    Raubal M, Winter S (2002) Enriching wayfinding instructions with local landmarks. In: Egenhofer MJ, Mark DM (eds) Geograph Inf Sci. Springer, Berlin, pp 243–259CrossRefGoogle Scholar
  23. 23.
    Sadalla EK, Burroughs WJ, Staplin LJ (1980) Reference points in spatial cognition. J Exp Psychol Hum Learn Mem 6(5):516–528CrossRefGoogle Scholar
  24. 24.
    Sorrows M, Hirtle S (1999) The nature of landmarks for real and electronic spaces. In: Freksa C, Mark D (eds) Spatial Information theory, lecture notes in computer science, vol 1661. Springer, Berlin, pp 37–50Google Scholar
  25. 25.
    Tezuka T, Tanaka K (2005) Landmark extraction: a web mining approach. In: Cohn A, Mark D (eds) Spatial Information theory, lecture notes in computer science, vol 3693. Springer, Berlin, pp 379–396CrossRefGoogle Scholar
  26. 26.
    Tomko M (2004) Case study-assessing spatial distribution of web resources for navigation services. In: Proceedings of the 4th international workshop on web and wireless geographical information systems, W2GIS04. Goyang, Korea, pp 90–104Google Scholar
  27. 27.
    Vasardani M, Winter S, Richter K (2013) Locating place names from place descriptions. Int J Geograph Inf Sci 27(12):2509–2532CrossRefGoogle Scholar
  28. 28.
    Winter S, Richter KF (2014) Landmarks: GIScience for intelligent services. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Infrastructure EngineeringThe University of MelbourneParkvilleAustralia

Personalised recommendations