KI - Künstliche Intelligenz

, Volume 30, Issue 3–4, pp 311–314 | Cite as

From RoboCup Rescue to Supervised Autonomous Mobile Robots for Remote Inspection of Industrial Plants

  • Stefan KohlbrecherEmail author
  • Oskar von Stryk
Technical contribution


With increasing capabilities and reliability of autonomous mobile robots, inspection of remote industrial plants in challenging environments becomes feasible. With the ARGOS challenge, oil and gas company TOTAL S.A. initiated an international competition aimed at the development of the first autonomous mobile robot which can safely operate in complete or supervised autonomy over the entire onshore or offshore production site, potentially in hazardous explosive atmospheres and harsh conditions. In this work, the approach of joint Austrian–German Team ARGONAUTS towards solving this challenge is introduced, focussing on autonomous capabilities. These build on functional components developed during prior participation in the RoboCup Rescue Robot League.


Urban search and rescue Mobile robotics Industrial inspection Autonomous navigation Supervised autonomy 



The authors gratefully acknowledge the contributions by and fruitful cooperation with all members of Teams ARGONAUTS and Hector.


  1. 1.
    Chitta S, Sucan I, Cousins S (2012) MoveIt!. IEEE Robot Autom Mag 19(1):18–19CrossRefGoogle Scholar
  2. 2.
    Fankhauser P, Hutter M (2016) A universal grid map library: implementation and use case for rough terrain navigation. In: Koubaa A (ed) Robot operating system (ROS): the complete reference, vol 1. Springer International Publishing, Cham, pp 99–120. doi: 10.1007/978-3-319-26054-9_5
  3. 3.
    Kohlbrecher S, Meyer J, Graber T, Petersen K, Klingauf U, von Stryk O (2014) Hector open source modules for autonomous mapping and navigation with rescue robots. In: Behnke S et al (eds) RoboCup 2013: robot world cup XVII, LNCS, vol 8371. Springer, Berlin, pp 624–631Google Scholar
  4. 4.
    Kohlbrecher S, von Stryk O, Meyer J, Klingauf U (2011) A flexible and scalable SLAM system with full 3d motion estimation. In: IEEE international symposium on safety, security, and rescue robotics (SSRR), pp 155–160Google Scholar
  5. 5.
    Kydd K, Macrez S, Pourcel P (2015) Autonomous robot for gas and oil sites. In: SPE offshore Europe conference & exhibition. Society of Petroleum EngineersGoogle Scholar
  6. 6.
    Marder-Eppstein E, Berger E, Foote T, Gerkey BP, Konolige K (2010) The office marathon: robust navigation in an indoor office environment. In: IEEE international conferrence on robotics and automation (ICRA), pp 300–307Google Scholar
  7. 7.
    Pellenz J, Jacoff A, Kimura T, Mihankhah E, Sheh R, Suthakorn J (2015) RoboCup rescue robot league. In: Bianchi RAC, Akin HL, Ramamoorthy S, Sugiura K (eds) RoboCup 2014: robot world cup XVIII. Springer, Cham, pp 673–685. doi: 10.1007/978-3-319-18615-3_55
  8. 8.
    Pomerleau F, Colas F, Siegwart R, Magnenat S (2013) Comparing ICP variants on real-world data sets. Auton Robot 34(3):133–148CrossRefGoogle Scholar
  9. 9.
    Schillinger P, Kohlbrecher S, von Stryk O (2016) Human-robot collaborative high-level control with application to rescue robotics. In: IEEE international conferrence on robotics and automation (ICRA), pp 2796–2802Google Scholar
  10. 10.
    Sheh R, Jacoff A, Virts A-M, Kimura T, Pellenz J, Schwertfeger S, Suthakorn J (2014) Advancing the state of urban search and rescue robotics through the RoboCupRescue robot league competition. In: Yoshida K, Tadokoro S (eds) Field and service robotics: results of the 8th international conference. Springer, Berlin, Heidelberg, pp 127–142. doi: 10.1007/978-3-642-40686-7_9
  11. 11.
    Wurm KM, Hornung A, Bennewitz M, Stachniss C, Burgard W (2010) OctoMap: a probabilistic, flexible, and compact 3D map representation for robotic systems. In: Proceedings of the IEEE ICRA workshop best practice in 3D perception & modeling for mobile manipulationGoogle Scholar
  12. 12.
    Yoshida T, Nagatani K, Tadokoro S, Nishimura T, Koyanagi E (2014) Improvements to the rescue robot quince toward future indoor surveillance missions in the Fukushima Daiichi nuclear power plant. In: Yoshida K, Tadokoro S (eds) Field and service robotics: results of the 8th international conference. Springer, Berlin, Heidelberg, pp 19–32. doi: 10.1007/978-3-642-40686-7_2

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Simulation, Systems Optimization and Robotics Group, Department of Computer ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations