KI - Künstliche Intelligenz

, Volume 30, Issue 3–4, pp 279–287 | Cite as

An Object Template Approach to Manipulation for Humanoid Avatar Robots for Rescue Tasks

  • Alberto RomayEmail author
  • Stefan Kohlbrecher
  • Oskar von Stryk
Technical contribution


Nowadays, the first steps towards the use of remote mobile robots to perform rescue tasks in disaster environments have been made possible. However, these environments still present several challenges for robots, which open new possibilities for research and development. For example, fully autonomous robots are not yet suitable for such tasks with high degree of uncertainty, and pure teloperated robots require high expertise and high mental workload, as well as fast communication to be reliable. In this paper, we discuss a middle ground approach to manipulation, that leverages the strengths and abilities of a human supervisor and a semi-autonomous robot while at the same tackling their weaknesses. This approach is based on the object template concept, which provides an interaction method to rapidly communicate to a remote robot the physical and abstract information for manipulation of the objects of interest. This approach goes beyond current grasp-centered approaches by focusing on the affordance information of the objects and providing flexibility to solve manipulation tasks in versatile ways. Experimental evaluation of the approach is performed using two highly advanced humanoid robots.


Humanoid robot Collaborative autonomy Avatar robot Disaster robotics 



The authors would like to thank all members of Team ViGIR, specially David C. Conner, and Team Hector for their contribution and support which enabled the realization of this work.


  1. 1.
    Fallon M, Kuindersma S, Karumanchi S, Antone M, Schneider T, Dai H, Perez D’Arpino C, Deits R, DiCicco M, Fourie D, et al. (2014) An architecture for online affordance-based perception and whole-body planning.
  2. 2.
    Gibson JJ (1977) The theory of affordances. In: Shaw R, Bransford EJ (eds) Perceiving, acting, and knowing: toward an ecological psychology. Hilldale, USA, pp 67–82Google Scholar
  3. 3.
    Goodrich MA, Crandall JW, Barakova E (2013) Teleoperation and beyond for assistive humanoid robots. Rev Hum Factors Ergon 9(1):175–226CrossRefGoogle Scholar
  4. 4.
    Hart S, Dinh P, Hambuchen K (2015) The affordance template ROS package for robot task programming. In: 2015 IEEE international conference on robotics and automation (ICRA)Google Scholar
  5. 5.
    Johnson M, Bradshaw J, Feltovich P, Jonker C, van Riemsdijk B, Sierhuis M (2011) The fundamental principle of coactive design: interdependence must shape autonomy. In: De Vos M, Fornara N, Pitt J, Vouros G (eds) Coordination, organizations, institutions, and norms in agent systems VI, Lecture notes in computer science, vol 6541, pp 172–191. Springer, Berlin. doi: 10.1007/978-3-642-21268-0_10
  6. 6.
    Johnson M, Shrewsbury B, Bertrand S, Wu T, Duran D, Floyd M, Abeles P, Stephen D, Mertins N, Lesman A, Carff J, Rifenburgh W, Kaveti P, Straatman W, Smith J, Griffioen M, Layton B, de Boer T, Koolen T, Neuhaus P, Pratt J (2015) Team IHMC’s lessons learned from the DARPA robotics challenge trials. J Field Robot 32(2):192–208. doi: 10.1002/rob.21571 CrossRefGoogle Scholar
  7. 7.
    Kohlbrecher S, Romay A, Stumpf A, Gupta A, von Stryk O, Bacim F, Bowman DA, Goins A, Balasubramanian R, Conner DC (2015) Human-robot teaming for rescue missions: team vigir’s approach to the 2013 DARPA robotics challenge trials. J Field Robot 32(3):352–377. doi: 10.1002/rob.21558 CrossRefGoogle Scholar
  8. 8.
    Koolen T, Smith J, Thomas G, Bertrand S, Carff J, Mertins N, Stephen D, Abeles P, Englsberger J, Mccrory S, et al (2013) Summary of team IHMC’s virtual robotics challenge entry. In: Proceedings of the IEEE-RAS international conference on humanoid robotsGoogle Scholar
  9. 9.
    Lu M, Zhao J, Guo Y, Ma Y (2016) Accelerated coherent point drift for automatic three-dimensional point cloud registration. IEEE Geosci Remote Sens Lett 13(2):162–166. doi: 10.1109/LGRS.2015.2504268 CrossRefGoogle Scholar
  10. 10.
    Murphy RR (2000) Introduction to AI robotics. MIT Press, CambridgeGoogle Scholar
  11. 11.
    Nagatani K, Kiribayashi S, Okada Y, Tadokoro S, Nishimura T, Yoshida T, Koyanagi E, Hada Y (2011) Redesign of rescue mobile robot quince. In: 2011 IEEE international symposium on safety, security, and rescue robotics (SSRR), pp 13–18Google Scholar
  12. 12.
    Pratt J (2014) Towards humanoid Avatar robots for co-exploration of hazardous environments. In: 14th IEEE-RAS international conference on humanoid robots (Humanoids), 2014.
  13. 13.
    Romay A (2016) An object template approach to manipulation for semi-autonomous Avatar robots. Ph.D. thesis, TU Darmstadt, Department of Computer ScienceGoogle Scholar
  14. 14.
    Romay A, Kohlbrecher S, Conner D, von Stryk O (2015) Achieving versatile manipulation tasks with unknown objects by supervised humanoid robots based on object templates. In: Humanoid robots (Humanoids), 2015 IEEE-RAS 15th international conference on, pp 249–255. doi: 10.1109/HUMANOIDS.2015.7363543
  15. 15.
    Romay A, Maniatopoulos S, Kohlbrecher S, Schillinger P, Stumpf A, Kress-Gazit H, von Stryk O, Conner DC (2016) Collaborative autonomy between high-level behaviors and human supervisors for remote manipulation tasks using different humanoid robots. J Field RobotGoogle Scholar
  16. 16.
    Şahin E, Çakmak M, Doğar MR, Uğur E, Üçoluk G (2007) To afford or not to afford: a new formalization of affordances toward affordance-based robot control. Adapt Behav 15(4):447–472CrossRefGoogle Scholar
  17. 17.
    Schillinger P, Kohlbrecher S, von Stryk O (2016) Human-robot collaborative high-level control with application to rescue robotics. In: Proceedings of the IEEE International conference on robotics and automation (ICRA), Stockholm, pp 2796–2802Google Scholar
  18. 18.
    Tedrake R (2016) Drake: A planning, control, and analysis toolbox for nonlinear dynamical systems. Accessed 10 Feb 2016
  19. 19.
    Yanco HA, Norton A, Ober W, Shane D, Skinner A, Vice J (2015) Analysis of human-robot interaction at the DARPA robotics challenge trials. J Field Robot 32(3):420–444. doi: 10.1002/rob.21568 CrossRefGoogle Scholar
  20. 20.
    Yang J, Li H, Campbell D, Jia Y (2016) Go-icp: a globally optimal solution to 3D ICP point-set registration. IEEE Trans Pattern Anal Mach Intell PP(99), pp 1–1. doi: 10.1109/TPAMI.2015.2513405

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Simulation, Systems Optimization and Robotics Group Department of Computer ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations