Advertisement

KI - Künstliche Intelligenz

, Volume 30, Issue 2, pp 193–196 | Cite as

A System for Probabilistic Linking of Thesauri and Classification Systems

  • Lisa Posch
  • Philipp Schaer
  • Arnim Bleier
  • Markus Strohmaier
SYSTEM DESCRIPTION

Abstract

This paper presents a system which creates and visualizes probabilistic semantic links between concepts in a thesaurus and classes in a classification system. For creating the links, we build on the Polylingual Labeled Topic Model (PLL-TM) (Posch et al., in KI 2015: advances in artificial intelligence, 2015). PLL-TM identifies probable thesaurus descriptors for each class in the classification system by using information from the natural language text of documents, their assigned thesaurus descriptors and their designated classes. The links are then presented to users of the system in an interactive visualization, providing them with an automatically generated overview of the relations between the thesaurus and the classification system.

Keywords

Thesauri Classification Probabilistic linking  Interactive visualization 

References

  1. 1.
    Bostock M (2011) Collapsible Tree (2012). http://bl.ocks.org/mbostock/4339083. Accessed 12 May 2015
  2. 2.
    Bostock M, Ogievetsky V, Heer J (2011) D\(^3\) data-driven documents. IEEE Trans Vis Comput Graph 17(12):2301–2309. doi: 10.1109/TVCG.2011.185. http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.185
  3. 3.
    Lüke T, Schaer P, Mayr P (2012) Improving retrieval results with discipline-specific query expansion. In: Theory and practice of digital libraries. Lecture notes in computer science, vol 7489. Springer, Berlin, pp 408–413. doi: 10.1007/978-3-642-33290-6_44. http://dx.doi.org/10.1007/978-3-642-33290-6_44
  4. 4.
    Petras V (2006) Translating dialects in search: mapping between specialized languages of discourse and documentary languages. Ph.D. thesis, University of California, BerkeleyGoogle Scholar
  5. 5.
    Posch L (2014) Enriching ontologies with encyclopedic background knowledge for document indexing. In: The semantic web—ISWC 2014. Lecture notes in computer science, vol 8797. Springer International Publishing, Switzerland, pp 537–544. doi: 10.1007/978-3-319-11915-1_36. http://dx.doi.org/10.1007/978-3-319-11915-1_36
  6. 6.
    Posch L, Bleier A, Schaer P, Strohmaier M (2015) The polylingual labeled topic model. In: Steffen Hölldobler, Markus Krötzsch, Rafael Peñaloza, Sebastian Rudolph (eds) KI (2015): advances in artificial intelligence. Springer, BerlinGoogle Scholar
  7. 7.
    Reingold EM, Tilford JS (1981) Tidier drawings of trees. IEEE Trans Softw Eng 7(2):223–228. doi: 10.1109/TSE.1981.234519. http://doi.ieeecomputersociety.org/10.1109/TSE.1981.234519
  8. 8.
    Tudhope D, Koch T, Heery R (2006) Terminology services and technology: jisc state of the art review. Tech Rep. http://opus.bath.ac.uk/23563/
  9. 9.
    Weller K (2010) Knowledge representation in the social semantic web, 1st edn. K G Saur Verlag, MunichCrossRefGoogle Scholar
  10. 10.
    Zapilko B, Schaible J, Mayr P, Mathiak B (2013) Thesoz: a SKOS representation of the thesaurus for the social sciences. Semant Web 4(3):257–263. doi: 10.3233/SW-2012-0081.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.GESIS-Leibniz Institute for the Social SciencesCologneGermany
  2. 2.Institute for Web Science and TechnologiesUniversity of Koblenz-LandauMainzGermany

Personalised recommendations