Advertisement

KI - Künstliche Intelligenz

, Volume 30, Issue 2, pp 177–182 | Cite as

Abductive Conjunctive Query Answering w.r.t. Ontologies

  • Ralf Möller
  • Özgür Özçep
  • Volker Haarslev
  • Anahita Nafissi
  • Michael Wessel
Technical Contribution
  • 144 Downloads

Abstract

In this article we investigate abductive conjunctive query answering w.r.t. ontologies and show how use cases can benefit from this kind of query answering service. While practical reasoning systems such as Racer have supported abductive conjunctive query answering for 10 years now, and many projects have exploited this feature, few publications deal with A-box abduction from an implementation perspective. This article gives a generalized overview on features provided by practical systems and also explains optimization techniques needed to meet practical requirements.

Keywords

Description logics Query answering Abduction 

References

  1. 1.
    Kakas A, Kowalski R, Toni F (1993) Abductive logic programming. J Logic Comput 2(6):239–770MathSciNetzbMATHGoogle Scholar
  2. 2.
    Gaasterland T, Godfrey P, Minker J (1992) Relaxation as a platform for cooperative answering. J Intell Inf Syst 1:293–321CrossRefGoogle Scholar
  3. 3.
    Shanahan M (2005) Perception as abduction: turning sensor data into meaningful representation. Cognit Sci 29(1):103–134MathSciNetCrossRefGoogle Scholar
  4. 4.
    Petasis G, Möller R, Karkaletsis V (2013) Boemie: reasoning-based information extraction. In: Proceedings of the 1st workshop on natural language processing and automated reasoning co-located with 12th international conference on logic programming and nonmonotonic reasoning (LPNMR 2013), pp 60–75Google Scholar
  5. 5.
    Haarslev V, Hidde K, Möller R, Wessel M (2012) The RacerPro knowledge representation and reasoning system. Seman Web J 3(3):267–277Google Scholar
  6. 6.
    Espinosa S, Kaya A, Möller R (2009) The BOEMIE semantic browser: a semantic application exploiting rich semantic metadata. In: Proceedings of the applications of semantic technologies workshop (AST-2009), Lübeck, GermanyGoogle Scholar
  7. 7.
    Lenat DB, Feigenbaum EA (1991) On the thresholds of knowledge. Artif Intell 47(1–3):185–250MathSciNetCrossRefGoogle Scholar
  8. 8.
    Denecker M, Kakas AC (2002) Abduction in logic programming. In: Kakas AC, Sadri F (eds) Computational logic: logic programming and beyond, essays in honour of Robert A. Kowalski, part I. Lecture notes in computer science, vol 2407. Springer, Berlin, pp 402–436Google Scholar
  9. 9.
    Möller R, Neumann B (2008) Ontology-based reasoning techniques for multimedia interpretation and retrieval. In: Semantic multimedia and ontologies : theory and applications. Springer, Berlin, pp 55–98Google Scholar
  10. 10.
    Espinosa Peraldi S, Kaya A, Melzer S, Möller R (2008) On ontology based abduction for text interpretation. In: Gelbukh A (ed) Proceedings of 9th international conference on intelligent text processing and computational linguistics (CICLing-2008)Google Scholar
  11. 11.
    Dolog P, Stuckenschmidt H, Wache H, Diederich J (2009) Relaxing rdf queries based on user and domain preferences. J Intell Inf Syst 33:239–260CrossRefGoogle Scholar
  12. 12.
    Espinosa S (2011) Content management and knowledge management: two faces of ontology-based text interpretation. PhD thesis, Hamburg University of TechnologyGoogle Scholar
  13. 13.
    Espinosa S, Atila K, Möller R (2011) Knowledge-driven multimedia information extraction and ontology evolution. In: LNCS, chapter logical formalization of multimedia interpretation, vol 6050. Springer, Berlin, pp 110–133Google Scholar
  14. 14.
    Kaya A (2010) A logic-based approach to multimedia interpretation. PhD thesis, Hamburg University of TechnologyGoogle Scholar
  15. 15.
    Castano S, Peraldi ISE, Ferrara A, Karkaletsis V, Kaya A, Möller R, Montanelli S, Petasis G, Wessel M (2009) Multimedia interpretation for dynamic ontology evolution. J. Log. Comput. 19(5):859–897MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Espinosa S, Kaya A, Möller R (2009) Formalizing multimedia interpretation based on abduction over description logic aboxes. In: Proceedings of the 2009 international workshop on description logics DL- 2009, 27 to 30 July 2009. CEUR workshop proceedings, vol 477, Oxford, UKGoogle Scholar
  17. 17.
    Du J, Guilin Q, Yi-Dong S, Jeff PZ (2012) Towards practical abox abduction in large description logic ontologies. Int. J. Seman. Web Inf. Syst. 8(2):1–33CrossRefGoogle Scholar
  18. 18.
    Klarman S, Endriss U, Schlobach S (2011) Abox abduction in the description logic ALC. J Autom Reas 46(1):43–80MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ma Y, Gu T, Xu B, Chang L (2012) An abox abduction algorithm for the description logic alci. In: Intelligent information processing VI. IFIP advances in information and communication technology, vol 385. Springer, Berlin, pp 125–130Google Scholar
  20. 20.
    Hobbs JR, Stickel ME, Appelt DE, Martin PA (1993) Interpretation as abduction. Artif Intell 63(1–2):69–142CrossRefGoogle Scholar
  21. 21.
    Gries O, Möller R, Nafissi A, Rosenfeld M, Sokolski K, Wessel M (2010) A probabilistic abduction engine for media interpretation based on ontologies. In: Hitzler P, Lukasiewicz T (eds) Web reasoning and rule systems—fourth international conference, RR 2010, Bressanone/Brixen, Italy, September 22–24, 2010. Proceedings. Lecture notes in computer science, vol 6333. Springer, Berlin, pp 182–194Google Scholar
  22. 22.
    Nafissi A (2013) Applying markov logics for controlling abox abduction. PhD thesis, Hamburg University of TechnologyGoogle Scholar
  23. 23.
    Baader F, Peñaloza R (2010) Axiom pinpointing in general tableaux. J Logic Comput 20(1):5–34 (Special Issue: Tableaux and Analytic Proof Methods) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kalyanpur A, Parsia B, Horridge M, Sirin E (2007) Finding all justifications of owl dl entailments. In: The semantic web. Springer, Berlin, pp 267–280Google Scholar
  25. 25.
    Özçep OL, Möller R, Neuenstadt C (2014) A stream-temporal query language for ontology based data access. In: KI 2014, vol 8736. LNCS, pp 183–194Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ralf Möller
    • 1
  • Özgür Özçep
    • 1
  • Volker Haarslev
    • 2
  • Anahita Nafissi
    • 3
  • Michael Wessel
    • 4
  1. 1.University of LübeckLübeckGermany
  2. 2.Concordia UniversityMontrealCanada
  3. 3.Forschungszentrum JülichDürenGermany
  4. 4.Hamburg University of TechnologyHamburgGermany

Personalised recommendations