KI - Künstliche Intelligenz

, Volume 29, Issue 3, pp 291–297 | Cite as

Can Machine Intelligence be Measured in the Same Way as Human intelligence?

  • Tarek Besold
  • José Hernández-Orallo
  • Ute Schmid
Discussion

Abstract

In recent years the number of research projects on computer programs solving human intelligence problems in artificial intelligence (AI), artificial general intelligence, as well as in Cognitive Modelling, has significantly grown. One reason could be the interest of such problems as benchmarks for AI algorithms. Another, more fundamental, motivation behind this area of research might be the (implicit) assumption that a computer program that successfully can solve human intelligence problems has human-level intelligence and vice versa. This paper analyses this assumption.

Keywords

Intelligence tests Strong AI Psychometric AI  Cognitive modelling 

References

  1. 1.
    Amthauer R, Brocke B, Liepmann D, Beauducel A (1999) Intelligenz-Struktur-Test 2000 (I-S-T 2000). Hogrefe, GöttingenGoogle Scholar
  2. 2.
    Bartholomew DJ (2004) Measuring intelligence: facts and fallacies. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Besold TR (2013a) Human-level artificial intelligence must be a science. In: Kühnberger K-U, Rudolph S, Wang P (eds) Artificial general intelligence, vol 7999 LNCS. Springer, Berlin, pp 174–177Google Scholar
  4. 4.
    Besold TR (2013b) Turing revisited: a cognitively-inspired decomposition. In: Müller VC (ed) Philosophy and theory of artificial intelligence, SAPERE 5. Springer, Berlin, pp 121–132CrossRefGoogle Scholar
  5. 5.
    Besold TR (2014) A note on chances and limitations of psychometric AI. In KI 2014: Advances in artificial intelligence. Springer, Berlin, pp 49–54Google Scholar
  6. 6.
    Bors DA, Vigneau F (2001) The effect of practice on raven’s advanced progressive matrices. Learn Individ Differ 13(4):291–312CrossRefGoogle Scholar
  7. 7.
    Bringsjord S (2011) Psychometric artificial intelligence. J Exp Theor Artif Intell 23(3):271–277CrossRefGoogle Scholar
  8. 8.
    Bringsjord S, Schimanski B (2003) What is artificial intelligence? Psychometric AI as an answer. In: Proceedings of the 18th international joint conference on artificial intelligence (IJCAI’03), Morgan Kaufmann, pp 887–893Google Scholar
  9. 9.
    Burghardt J (2005) E-generalization using grammars. Artif Intell 165:1–35MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cooper R, Fox J, Farringdon J, Shallice T (1996) A systematic methodology for cognitive modelling. Artif Intell 83:3–44CrossRefGoogle Scholar
  11. 11.
    Deary IJ, Der G, Ford G (2001) Reaction times and intelligence differences: a population-based cohort study. Intelligence 29(5):389–399CrossRefGoogle Scholar
  12. 12.
    Detterman D (2011) A challenge to Watson. Intelligence 39(2–3):77–78CrossRefGoogle Scholar
  13. 13.
    Dowe DL, Hernández-Orallo J (2012) IQ tests are not for machines, yet. Intelligence 40(2):77–81CrossRefGoogle Scholar
  14. 14.
    Harnad S (1990) The symbol grounding problem. Physica D 42:335–346CrossRefGoogle Scholar
  15. 15.
    Hernández-Orallo J (2000) Beyond the Turing test. J Log Lang Inf 9(4):447–466CrossRefMATHGoogle Scholar
  16. 16.
    Hernández-Orallo J, Dowe DL, Hernández-Lloreda MV (2014) Universal psychometrics: measuring cognitive abilities in the machine kingdom. Cogn Syst Res 27:50–74CrossRefGoogle Scholar
  17. 17.
    Hofmann J, Kitzelmann E, Schmid U (2014) Applying inductive program synthesis to induction of number series a case study with IGOR2. In KI 2014: Advances in artificial intelligence, Springer, Berlin, pp 25–36Google Scholar
  18. 18.
    Johnson-Laird PN (1988) The computer and the mind: an introduction to cognitive science. Fontana Press, LondonGoogle Scholar
  19. 19.
    Kühnberger KU, Hitzler P (2009) Facets of artificial general intelligence. KI 23(2):58–59Google Scholar
  20. 20.
    Legg S, Hutter M (2007) Universal intelligence: a definition of machine intelligence. Minds Mach 17(4):391–444CrossRefGoogle Scholar
  21. 21.
    Lovett A, Forbus K, Usher J (2010) A structure-mapping model of Raven’s Progressive Matrices. In: Proceedings of CogSci-10, pp 2761–2766Google Scholar
  22. 22.
    Miller M (1999) The savant syndrome: intellectual impairment and exceptional skill. Psychol Bull 125(1):31–46CrossRefGoogle Scholar
  23. 23.
    Mueller ST, Jones M, Minnery BS, Hiland JMH (2007) The BICA cognitive decathlon: a test suite for biologically-inspired cognitive agents. In: Proceedings of behavior representation in modeling and simulation conference, NorfolkGoogle Scholar
  24. 24.
    Newell A (1980) Physical symbol systems. Cogn Sci 4:135–183CrossRefGoogle Scholar
  25. 25.
    Newell A (1982) The knowledge level. Artif Intell 18:87–127CrossRefGoogle Scholar
  26. 26.
    Pylyshyn Z (1980) Computation and cognition: issues in the foundation of cognitive science. Behav Brain Sci 3:111–132CrossRefGoogle Scholar
  27. 27.
    Sanghi P, Dowe DL (2003) A computer program capable of passing I.Q. tests. In: Slezak PP (ed) Proceedings of ICCS/ASCS-2003, Sydney, AU, pp 570–575Google Scholar
  28. 28.
    Siebers M, Schmid U (2012) Semi-analytic natural number series induction. In KI 2012: Advances in artificial intelligence, Springer, Berlin, pp 249–252Google Scholar
  29. 29.
    Spearman C (1904) General intelligence objectively determined and measured. Am J Psychol 15:201293Google Scholar
  30. 30.
    Sternberg RJ (ed) (2000) Handbook of intelligence. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Strannegård C, Amirghasemi M, Ulfsbäcker S (2013a) An anthropomorphic method for number sequence problems. Cogn Syst Res 22–23:27–34CrossRefGoogle Scholar
  32. 32.
    Strannegård C, Cirillo S, Ström V (2013b) An anthropomorphic method for progressive matrix problems. Cogn Syst Res 22–23:35–46CrossRefGoogle Scholar
  33. 33.
    Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460MathSciNetCrossRefGoogle Scholar
  34. 34.
    Turing AM (1969) Intelligent machinery. In: Meltzer B, Michie D (eds) Machine intelligence, vol 5. Edinburgh University Press, Edinburgh, pp 3–23Google Scholar
  35. 35.
    Von Ahn L, Blum M, Hopper NJ, Langford J (2003) CAPTCHA: using hard AI problems for security. In: Advances in cryptology—EUROCRYPT 2003, Springer, pp 294–311Google Scholar
  36. 36.
    Wechsler D (1944) The measurement of adult intelligence. Williams & Wilkins, BaltimoreCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tarek Besold
    • 1
  • José Hernández-Orallo
    • 2
  • Ute Schmid
    • 3
  1. 1.Institute of Cognitive ScienceUniversity of OsnabrückOsnabrückGermany
  2. 2.Dept. de Sistemes Informàtics i ComputacióUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.Faculty Information Systems and Applied Computer ScienceUniversity of BambergBambergGermany

Personalised recommendations