KI - Künstliche Intelligenz

, Volume 29, Issue 2, pp 153–159

Exploiting Latent Embeddings of Nominal Clinical Data for Predicting Hospital Readmission

  • Denis Krompaß
  • Cristóbal Esteban
  • Volker Tresp
  • Martin Sedlmayr
  • Thomas Ganslandt
Technical Contribution

DOI: 10.1007/s13218-014-0344-x

Cite this article as:
Krompaß, D., Esteban, C., Tresp, V. et al. Künstl Intell (2015) 29: 153. doi:10.1007/s13218-014-0344-x

Abstract

Hospital readmissions of patients put a high burden not only on the health care system, but also on the patients since complications after discharge generally lead to additional burdens. Estimating the risk of readmission after discharge from inpatient care has been the subject of several publications in recent years. In those publications the authors mostly tried to directly infer the readmission risk (within a certain time frame) from the clinical data recorded in the medical routine such as primary diagnosis, co-morbidities, length of stay, or questionnaires. Instead of using these data directly as inputs for a prediction model, we are exploiting latent embeddings for the nominal parts of the data (e.g., diagnosis and procedure codes). These latent embeddings have been used with great success in the natural language processing domain and can be constructed in a preprocessing step. We show in our experiments, that a prediction model that exploits these latent embeddings can lead to improved readmission predictive models.

Keywords

Hospital readmission Latent embeddings Latent factors Logistic regression Neural network 

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Denis Krompaß
    • 1
  • Cristóbal Esteban
    • 2
  • Volker Tresp
    • 2
  • Martin Sedlmayr
    • 3
  • Thomas Ganslandt
    • 3
  1. 1.Ludwig Maximilian UniversityMunichGermany
  2. 2.Siemens AG, Corporate TechnologyMunichGermany
  3. 3.Friedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations