KI - Künstliche Intelligenz

, Volume 28, Issue 4, pp 297–304

The RACE Project

Robustness by Autonomous Competence Enhancement
  • Joachim Hertzberg
  • Jianwei Zhang
  • Liwei Zhang
  • Sebastian Rockel
  • Bernd Neumann
  • Jos Lehmann
  • Krishna S. R. Dubba
  • Anthony G. Cohn
  • Alessandro Saffiotti
  • Federico Pecora
  • Masoumeh Mansouri
  • Štefan Konečný
  • Martin Günther
  • Sebastian Stock
  • Luis Seabra Lopes
  • Miguel Oliveira
  • Gi Hyun Lim
  • Hamidreza Kasaei
  • Vahid Mokhtari
  • Lothar Hotz
  • Wilfried Bohlken
Research Project

Abstract

This paper reports on the aims, the approach, and the results of the European project RACE. The project aim was to enhance the behavior of an autonomous robot by having the robot learn from conceptualized experiences of previous performance, based on initial models of the domain and its own actions in it. This paper introduces the general system architecture; it then sketches some results in detail regarding hybrid reasoning and planning used in RACE, and instances of learning from the experiences of real robot task execution. Enhancement of robot competence is operationalized in terms of performance quality and description length of the robot instructions, and such enhancement is shown to result from the RACE system.

References

  1. 1.
    Baader F, Sertkaya B, Turhan A-Y (2007) Computing the least common subsumer wrt a background terminology. J Appl Logic 5(3):392–420MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bohlken W, Koopmann P, Hotz L, Neumann B (2013) Towards ontology-based realtime behaviour interpretation. In: Guesgen HW, Marsland S (eds) Human behavior recognition technologies: intelligent applications for monitoring and security, IGI Global, pp 33–64Google Scholar
  3. 3.
    Dubba KSR, Cohn AG, Hogg DC, Bhatt M, Dylla F (2014) Learning relational event models from video, submitted for publicationGoogle Scholar
  4. 4.
    Dubba KSR, de Oliveira MR, Lim GH, Kasaei H, Seabra Lopes L, Tomé AM, Cohn AG (2014) Grounding language in perception for scene conceptualization in autonomous robots. In: Proceedings of AAAI 2014 spring symposium on qualitative representations for robotsGoogle Scholar
  5. 5.
    Erol K, Hendler J, Nau DS (1994) HTN planning: complexity and expressivity. In: Proceedings of AAAIGoogle Scholar
  6. 6.
    Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cognit Sci 7(2):155–170CrossRefGoogle Scholar
  7. 7.
    Kasaei SH, Oliveira M, Lim GH, Seabra Lopes L, Tomé AM (2014) An interactive open-ended learning approach for 3d object recognition. In: Proceedings of ICARSCGoogle Scholar
  8. 8.
    Konecnỳ Š, Stock S, Pecora F, Saffiotti A (2014) Planning domain+ execution semantics: a way towards robust execution? In: Proceedings of AAAI 2014 spring symposium on qualitative representations for robotsGoogle Scholar
  9. 9.
    Lehmann J, Neumann B, Bohlken W, Hotz L (2014) A robot waiter that predicts events by high-level scene interpretation. In: Proceedings of 6th international conference agents and artificial intelligenceGoogle Scholar
  10. 10.
    Lim GH, Oliveira M, Mokhtari V, Kasaei SH, Seabra Lopes L, Tomé MA (2014) Interactive teaching and experience extraction for learning about objects and robot activities. In: Proceedings of RO-MAN (accepted)Google Scholar
  11. 11.
    Mansouri M, Pecora F (2014) More knowledge on the table: planning with space, time and resources for robots. In: Proceedings of ICRAGoogle Scholar
  12. 12.
    Mokhtari V, Lim GH, Seabra Lopes L, Pinho AJ (2014) Gathering and conceptualizing plan-based robot activity experiences. In: Proceedings of IASGoogle Scholar
  13. 13.
    Nau D, Muñoz-Avila H, Cao Y, Lotem A, Mitchell S (2001) Total-order planning with partially ordered subtasks. In: Proceedings of IJCAIGoogle Scholar
  14. 14.
    Neumann B, Hotz L, Rost P, Lehmann J (2014) A robot waiter learning from experiences. In: Proceedings of MLDMGoogle Scholar
  15. 15.
    Newman MEJ (2003) Ego-centered networks and the ripple effect. Soc Netw 25(1):83–95CrossRefGoogle Scholar
  16. 16.
    Oliveira M, Lim GH, Seabra Lopes L, Kasaei SH, Tomé AM, Chauhan A (2014) A perceptual memory system for grounding semantic representations in intelligent service robots. In: Proceedings of IROS, (accepted)Google Scholar
  17. 17.
    Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J, Wheeler R, Ng AY (2009) ROS: an open-source robot operating system. In: Proceedings of ICRA workshop on open source softwareGoogle Scholar
  18. 18.
    RACE: robustness by autonomous competence enhancement. http://race.informatik.uni-hamburg.de/
  19. 19.
    Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465–471CrossRefMATHGoogle Scholar
  20. 20.
    Rockel S et al (2013) An ontology-based multi-level robot architecture for learning from experiences. In: Proceedings of designing intelligent robots, reintegrating AI II, AAAI spring symposium,Google Scholar
  21. 21.
    Rockel S, Klimentjew D, Zhang L, Zhang J (2014) An hyperreality imagination based reasoning and evaluation system (HIRES). In: Proceedings of ICRAGoogle Scholar
  22. 22.
    Tayyub J, Tavanai A, Gatsoulis Y, Cohn AG, Hogg D (2014) Qualitative and quantitative spatio-temporal relations in daily living activity recognition. University of Leeds, technical reportGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joachim Hertzberg
    • 4
  • Jianwei Zhang
    • 1
  • Liwei Zhang
    • 1
  • Sebastian Rockel
    • 1
  • Bernd Neumann
    • 1
  • Jos Lehmann
    • 1
  • Krishna S. R. Dubba
    • 2
  • Anthony G. Cohn
    • 2
  • Alessandro Saffiotti
    • 3
  • Federico Pecora
    • 3
  • Masoumeh Mansouri
    • 3
  • Štefan Konečný
    • 3
  • Martin Günther
    • 4
  • Sebastian Stock
    • 4
  • Luis Seabra Lopes
    • 5
  • Miguel Oliveira
    • 5
  • Gi Hyun Lim
    • 5
  • Hamidreza Kasaei
    • 5
  • Vahid Mokhtari
    • 5
  • Lothar Hotz
    • 6
  • Wilfried Bohlken
    • 6
  1. 1.Hamburg UniversityHamburgGermany
  2. 2.University of LeedsLeedsEngland
  3. 3.Örebro UniversityÖrebroSweden
  4. 4.Osnabrück UniversityOsnabrückGermany
  5. 5.University of AveiroAveiroPortugal
  6. 6.HITeC Hamburger Informatik Technologie-Center e. V.HamburgGermany

Personalised recommendations