Advertisement

KI - Künstliche Intelligenz

, Volume 26, Issue 3, pp 253–260 | Cite as

Discovering the Geographical Borders of Human Mobility

  • Salvatore RinzivilloEmail author
  • Simone Mainardi
  • Fabio Pezzoni
  • Michele Coscia
  • Dino Pedreschi
  • Fosca Giannotti
Fachbeitrag

Abstract

The availability of massive network and mobility data from diverse domains has fostered the analysis of human behavior and interactions. Broad, extensive, and multidisciplinary research has been devoted to the extraction of non-trivial knowledge from this novel form of data. We propose a general method to determine the influence of social and mobility behavior over a specific geographical area in order to evaluate to what extent the current administrative borders represent the real basin of human movement. We build a network representation of human movement starting with vehicle GPS tracks and extract relevant clusters, which are then mapped back onto the territory, finding a good match with the existing administrative borders. The novelty of our approach is the focus on a detailed spatial resolution, we map emerging borders in terms of individual municipalities, rather than macro regional or national areas. We present a series of experiments to illustrate and evaluate the effectiveness of our approach.

Keywords

Human Mobility Geographical Border Administrative Border Census Sector Human Mobility Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Alessandro Grossi and Michele Berlingerio for their technical support. We also acknowledge Octo Telematics S.p.A. for providing the datasets. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 270833.

References

  1. 1.
    Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: STOC. ACM, New York, pp 171–180 CrossRefGoogle Scholar
  2. 2.
    Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: Ordering points to identify the clustering structure. In: SIGMOD, pp 49–60 Google Scholar
  3. 3.
    Benevenuto F, Rodrigues T, Cha M, Almeida VAF (2009) Characterizing user behavior in online social networks. In: Internet measurement conference, pp 49–62 Google Scholar
  4. 4.
    Bringmann B, Berlingerio M, Bonchi F, Gionis A (2010) Learning and predicting the evolution of social networks. IEEE Intell Syst 25:26–35 CrossRefGoogle Scholar
  5. 5.
    De Castro R, Grossman JW (1999) Famous trails to Paul Erdös. Math Intell 21:51–63 zbMATHCrossRefGoogle Scholar
  6. 6.
    Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E, Stat Nonlinear Soft Matter Phys 70:066111 CrossRefGoogle Scholar
  7. 7.
    Cook DJ, Crandall AS, Singla G, Thomas B (2010) Detection of social interaction in smart spaces. Cybern Syst 41(2):90–104 zbMATHCrossRefGoogle Scholar
  8. 8.
    Coscia M, Giannotti F, Pedreschi D (2011) A classification for community discovery methods in complex networks. Stat Anal Data Min 4(5):512–546 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: SIGKDD. AAAI Press, Menlo Park, pp 226–231 Google Scholar
  10. 10.
    Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fortunato S, Barthélemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci USA 104(1):36–41 CrossRefGoogle Scholar
  12. 12.
    Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: SIGKDD, pp 330–339 Google Scholar
  13. 13.
    Gomez-Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: SIGKDD, pp 1019–1028 Google Scholar
  14. 14.
    Guimera R, Nunes Amaral KA (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900 CrossRefGoogle Scholar
  15. 15.
    Hecker D, Körner C, Stange H, Schulz D, May M (2011) Modeling micro-movement variability in mobility studies. In: Advancing geoinformation science for a changing world, LNG&C, vol 1, pp 121–140 CrossRefGoogle Scholar
  16. 16.
    Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York CrossRefGoogle Scholar
  17. 17.
    Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E, Stat Nonlinear Soft Matter Phys 80:5 Google Scholar
  18. 18.
    Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: KDD, pp 637–646 CrossRefGoogle Scholar
  19. 19.
    Nowell DL, Kleinberg J (2003) The link prediction problem for social networks. In: CIKM, pp 556–559 Google Scholar
  20. 20.
    Page L, Brin S, Motwani R, Winograd T (1998) The pagerank citation ranking: bringing order to the web Google Scholar
  21. 21.
    Ratti C, Sobolevsky S, Calabrese F, Andris C, Reades J, Martino M, Claxton R, Strogatz SH (2010) Redrawing the map of great Britain from a network of human interactions. PLoS ONE 5(12):5:e14248 CrossRefGoogle Scholar
  22. 22.
    Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 105:1118–1123 CrossRefGoogle Scholar
  23. 23.
    Thiemann C, Theis F, Grady D, Brune R, Brockmann D (2010) The structure of borders in a small world. PLoS ONE 5:11 CrossRefGoogle Scholar
  24. 24.
    Wang D, Pedreschi D, Song C, Giannotti F, Barabasi AL (2011) Human mobility, social ties, and link prediction. In: SIGKDD, pp 1100–1108 Google Scholar
  25. 25.
    Yan X, Han J (2002) gspan: Graph-based substructure pattern mining. In: ICDM. Google Scholar
  26. 26.
    Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2011) Semitri: a framework for semantic annotation of heterogeneous trajectories. In: EDBT/ICDT, pp 259–270 CrossRefGoogle Scholar
  27. 27.
    Yang J, Leskovec J (2010) Modeling information diffusion in implicit networks. In: ICDM, pp 599–608 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Salvatore Rinzivillo
    • 2
    Email author
  • Simone Mainardi
    • 1
  • Fabio Pezzoni
    • 1
  • Michele Coscia
    • 2
  • Dino Pedreschi
    • 3
  • Fosca Giannotti
    • 2
  1. 1.Department of Information EngineeringUniversity of PisaPisaItaly
  2. 2.ISTI-CNRPisaItaly
  3. 3.Department of InformaticsUniversity of PisaPisaItaly

Personalised recommendations