KI - Künstliche Intelligenz

, Volume 26, Issue 2, pp 151–159 | Cite as

Analysing Interactivity in Information Visualisation

  • Margit Pohl
  • Sylvia Wiltner
  • Silvia Miksch
  • Wolfgang Aigner
  • Alexander Rind


Modern information visualisation systems do not only support interactivity but also increasingly complex problem solving. In this study we compare two interactive information visualisation systems: VisuExplore and Gravi++. By analysing logfiles we were able to identify sets of activities and interaction patterns users followed while working with these systems. These patterns are an indication of strategies users adopt to find solutions. Identifying such patterns may help in improving the design of future information visualisation systems.


Evaluation Information visualisation Problem solving Software logging 



This work is conducted in the context of the CVAST—Centre of Visual Analytics Science and Technology project. It is funded by the Austrian Federal Ministry of Economy, Family and Youth in the exceptional Laura Bassi Centres of Excellence initiative. Furthermore, this work was supported by the Bridge program of the Austrian Research Promotion Agency (project no. 814316) and conducted in cooperation with Danube University Krems, Vienna University of Technology, NÖ Landeskliniken-Holding, Landesklinikum Krems, NÖGUS, systema Human Information Systems.


  1. 1.
    Cowley P, Nowell L, Scholtz J (2005) Glass Box: an instrumented infrastructure for supporting human interaction with information. In: Proceedings of the 38th annual Hawaii international conference on system sciences (HICSS) Google Scholar
  2. 2.
    Dix A, Pohl M, Ellis G (2010) Perception and cognitive aspects. In: Keim D, Kohlhammer J, Ellis G, Mansmann F (eds) Mastering the information age—solving problems with visual analytics, Eurographics Association, Goslar, pp 109–130 Google Scholar
  3. 3.
    Dou W, Jeong DH, Stukes F, Ribarsky W, Lipford HR, Chang R (2009) Recovering reasoning processes from user interactions. IEEE Comput Graph Appl 29(3):52–61 CrossRefGoogle Scholar
  4. 4.
    Fabrikant SI, Rebich-Hespanha S, Andrienko N, Andrienko G, Montello DR (2008) Novel method to measure inference affordance in static small-multiple map displays representing dynamic processes. Cartogr J 45(3):201–215 CrossRefGoogle Scholar
  5. 5.
    Gotz D, Zhou MX (2009) Characterizing users’ visual analytic activity for insight provenance. Inf Vis 8(1):42–55 CrossRefGoogle Scholar
  6. 6.
    Hinum K, Miksch S, Aigner W, Ohmann S, Popow C, Pohl M, Rester M (2005) Gravi++: interactive information visualization to explore highly structured temporal data. J Univers Comput Sci 11:1792–1805 Google Scholar
  7. 7.
    Hollan J, Hutchins E, Kirsh D (2000) Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans Comput-Hum Interact 7(2):174–196 CrossRefGoogle Scholar
  8. 8.
    Ivory MY, Hearst MA (2001) The state of the art in automating usability evaluation of user interfaces. ACM Comput Surv 33(4):470–516 CrossRefGoogle Scholar
  9. 9.
    Kang Y, Görg C, Stasko J (2011) How can visual analytics assist investigative analysis? Design implications from an evaluation. IEEE Trans Vis Comput Graph 17(5):570–583 CrossRefGoogle Scholar
  10. 10.
    Kerren A, Ebert A, Meyer J (2007) Human-centered visualization environments. Springer, Berlin CrossRefGoogle Scholar
  11. 11.
    Kuniavsky M (2003) Observing the user experience. Morgan Kaufmann, San Francisco Google Scholar
  12. 12.
    Liu Z, Nersessian N, Stasko J (2008) Distributed cognition as a theoretical framework for information visualization. IEEE Trans Vis Comput Graph 14(6):1173–1180 CrossRefGoogle Scholar
  13. 13.
    Liu Z, Stasko J (2010) Mental models, visual reasoning and interaction in information visualization. IEEE Trans Vis Comput Graph 16(6):999–1008 CrossRefGoogle Scholar
  14. 14.
    Mirel B (2004) Interaction design for complex problem solving: developing useful and usable software. Morgan Kaufmann, Amsterdam Google Scholar
  15. 15.
    Patel VL, Arocha JF, Zhang J (2007) Thinking and reasoning in medicine. In: Holyoak KJ, Morrison RG (eds) The Cambridge handbook of thinking and reasoning, 2nd reprint. Cambridge University Press, Cambridge, pp 727–750 Google Scholar
  16. 16.
    Pillat RM, Valiati ERA, Freitas CMDS (2005) Experimental study on evaluation of multidimensional visualization techniques. In: Proceedings of the CLIHC’05 conference, pp 20–30 Google Scholar
  17. 17.
    Pike WA, Stasko J, Chang R, O’Connell TA (2009) The science of interaction. Inf Vis 8(4):263–274 CrossRefGoogle Scholar
  18. 18.
    Pohl M, Wiltner S, Miksch S, Rester M, Hinum K, Popow C, Ohmann S (2010) Exploring information visualization—describing different interaction patterns, beyond time and errors: novel evaluation methods for Information Visualization. In: BELIV’10, a workshop at ACM conference on human factors in computing systems (CHI), p 2010 Google Scholar
  19. 19.
    Pohl M, Wiltner S, Rind A, Aigner W, Miksch S, Turic T, Drexler F (2011) Patient Development at a Glance: An Evaluation of a Medical Data Visualization. In: Campos P, Graham N, Jorge J, Nunes N, Palanque P, Winckler M (eds) INTERACT 2011, Part IV. LNCS, vol 6949, pp 292–299 Google Scholar
  20. 20.
    Preece J, Rogers Y, Sharp H, Benyon D, Holland S, Carey T (1994) Human-computer interaction. Addison-Wesley, Wokingham Google Scholar
  21. 21.
    Preece J, Rogers Y, Sharp H (2002) Interaction design. Wiley, New York Google Scholar
  22. 22.
    Ratwani RM, Trafton JG, Boehm-Davis DA (2008) Thinking graphically: connecting vision and cognition during graph comprehension. J Exp Psychol Appl 14(1):36–49 CrossRefGoogle Scholar
  23. 23.
    Rind A, Aigner W, Miksch S, Wiltner S, Pohl M, Turic T, Drexler F (2011) Visual exploration of time-oriented patient data for chronic diseases: design study and evaluation. In: Holzinger A, Simonic K-M (eds) USAB 2011: information quality in e-health. LNCS, vol 7058. Springer, Heidelberg, pp 301–320 CrossRefGoogle Scholar
  24. 24.
    Shah P, Freedman EG, Vekiri I (2005) The comprehension of quantitative information in graphical displays. In: Shah P, Miyake A (eds) The Cambridge handbook of visuospatial thinking. Cambridge University Press, Cambridge, pp 426–476 Google Scholar
  25. 25.
    Shrinivasan YB, van Wijk JJ (2009) Supporting exploration awareness in information visualization. IEEE Comput Graph Appl 29(5):34–43 CrossRefGoogle Scholar
  26. 26.
    Tversky B (2007) Visuospatial reasoning. In: Holyoak KJ, Morrison RG (eds) The Cambridge handbook of thinking and reasoning, 2nd reprint. Cambridge University Press, Cambridge, pp 209–240 Google Scholar
  27. 27.
    Wehrend SC, Lewis C (1990) A problem-oriented classification of visualization techniques. In: Kaufman AE et al. (eds) Proceedings of the first IEEE conference on visualization, San Francisco, CA, 23–26 October. IEEE Comput Soc, Los Alamitos, pp 139–143 CrossRefGoogle Scholar
  28. 28.
    Winograd T (2002) Interaction spaces for twenty-first-century computing. In: Carroll J (ed) Human-computer interaction in the new millennium. Addison-Wesley, Boston, pp 259–276 Google Scholar
  29. 29.
    Yi JS, Kang Y, Stasko JT, Jacko J (2007) Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans Vis Comput Graph 13(6):1224–1231 CrossRefGoogle Scholar
  30. 30.
    Zhou MX, Feiner SK (1998) Visual task characterization for automated visual discourse synthesis. In: Proceedings of the CHI’98 conference, pp 393–399 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Margit Pohl
    • 1
  • Sylvia Wiltner
    • 1
  • Silvia Miksch
    • 2
  • Wolfgang Aigner
    • 2
  • Alexander Rind
    • 2
  1. 1.Institute for Design and Assessment of TechnologyVienna University of TechnologyViennaAustria
  2. 2.Institute of Software Technology and Interactive SystemsVienna University of TechnologyViennaAustria

Personalised recommendations