KI - Künstliche Intelligenz

, Volume 25, Issue 1, pp 17–24 | Cite as

Centurio, a General Game Player: Parallel, Java- and ASP-based

  • Maximilian Möller
  • Marius SchneiderEmail author
  • Martin Wegner
  • Torsten Schaub


We present the General Game Playing system Centurio. Centurio is a Java-based player featuring different strategies based on Monte Carlo Tree Search extended by techniques borrowed from Upper Confidence bounds applied to Trees as well as Answer Set Programming (for single-player games). Centurio’s Monte Carlo Tree Search is accomplished in a massively parallel way by means of multi-threading as well as cluster-computing. Another major feature of Centurio is its compilation of game descriptions, states, and state manipulations into Java, yielding an edge over existing Prolog-based approaches. Centurio is open source software freely available via the web.


Answer set programming General game playing Monte Carlo tree search Parallelization 


  1. 1.
  2. 2.
    Baral C (2003) Knowledge representation, reasoning and declarative problem solving. Cambridge University Press, Cambridge zbMATHCrossRefGoogle Scholar
  3. 3.
    Brooks R (1991) Intelligence without representation. Artif Intell 47(1–3):139–159 CrossRefGoogle Scholar
  4. 4.
    Ceri S, Gottlob G, Tanca L (1990) Logic programming and databases. Springer, Berlin Google Scholar
  5. 5.
    Chaslot G, Winands M, Szita I, van den Herik H (2008) Parameter tuning by the cross-entropy method. In: European workshop on reinforcement learning Google Scholar
  6. 6.
    Gebser M, Kaminski R, Kaufmann B, Ostrowski M, Schaub T, Thiele S A user’s guide to gringo, clasp, clingo, and iclingo. Available at
  7. 7.
    Gebser M, Kaufmann B, Neumann A, Schaub T (2007) clasp: a conflict-driven answer set solver. In: Baral C, Brewka G, Schlipf J (eds) Proceedings of the ninth international conference on logic programming and nonmonotonic reasoning (LPNMR’07). Lecture notes in artificial intelligence, vol 4483. Springer, Berlin, pp 260–265 CrossRefGoogle Scholar
  8. 8.
    Gelly S, Silver D (2007) Combining online and offline knowledge in uct. In: Ghahramani Z (ed) Proceedings of the international conference of machine learning (ICML 2007), pp 273–280 CrossRefGoogle Scholar
  9. 9.
    Genesereth M, Love N, Pell B (2005) General game playing: overview of the AAAI competition. AI Mag 26(2):62–72 Google Scholar
  10. 10.
    Günther M, Schiffel S, Thielscher M (2009) Factoring general games. In: Proceedings of the IJCAI-09 workshop on general game playing (GIGA’09), pp 27–34 Google Scholar
  11. 11.
    Inc T Terracotta (2010)
  12. 12.
    Kocsis L, SzepesvÃri C (2006) Bandit based Monte-Carlo planning. In: ECML-06. LNCS, vol 4212. Springer, Berlin, pp 282–293 Google Scholar
  13. 13.
    Möller FM, Schneider TM, Wegner M (2010) GGP University of Potsdam.
  14. 14.
    Schiffel S (2009) Dresden GGP server.
  15. 15.
    Schiffel S, Thielscher M (2009) Automated theorem proving for general game playing. In: Proceedings of IJCAI’09 Google Scholar
  16. 16.
    Sturtevant NR, Korf RE (2000) On pruning techniques for multi-player games. In: Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of artificial intelligence. AAAI Press, Menlo Park, pp 201–207 Google Scholar
  17. 17.
    Thielscher M (2009) Answer set programming for single-player games in general game playing. In: Proceedings of the international conference on logic programming (ICLP). Springer, Berlin Google Scholar
  18. 18.
    Waugh K (2009) Faster state manipulation in general games using generated code. In: Proceedings of the 1st general intelligence in game-playing agents (GIGA) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Maximilian Möller
    • 1
  • Marius Schneider
    • 1
    Email author
  • Martin Wegner
    • 1
  • Torsten Schaub
    • 1
  1. 1.Institute for InformaticsUniversity of PotsdamPotsdamGermany

Personalised recommendations