Advertisement

KI - Künstliche Intelligenz

, Volume 24, Issue 4, pp 329–334 | Cite as

Spatial Cognition: Reasoning, Action, Interaction

  • C. Freksa
  • H. Schultheis
  • K. Schill
  • T. Tenbrink
  • T. Barkowsky
  • C. Hölscher
  • B. Nebel
Projekt
  • 230 Downloads

Abstract

The Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition pursues interdisciplinary research on a broad range of topics related to the representation and processing mechanisms for intelligent spatial behavior in technical and in natural systems. This contribution gives an overview of the field of research worked on in the SFB/TR 8 Spatial Cognition and presents three representative examples that illustrate the activities in the three research areas Reasoning, Action, and Interaction.

Keywords

Artificial Agent Cognitive Agent Spatial Task External Representation Dialogue System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge the funding of the SFB/TR 8 Spatial Cognition by the German Research Foundation (DFG), and we thank our project collaborators for their contributions.

References

  1. 1.
    Barkowsky T (2007) Modeling mental spatial knowledge processing: an AI perspective. In: Mast FW, Jäncke L (eds) Spatial processing in navigation, imagery, and perception. Springer, New York, pp 67–84 CrossRefGoogle Scholar
  2. 2.
    Bateman JA, Hois J, Ross RJ, Tenbrink T (2010) A linguistic ontology of space for natural language processing. Artif Intell 174:1027–1071 CrossRefGoogle Scholar
  3. 3.
    Bertel S, Barkowsky T, König P, Schultheis H, Freksa C (2006) Sketching mental images and reasoning with sketches: NEVILLE—a computational model of mental & external spatial problem solving. In: Fum D, del Missier F, Stocco A (eds) Proceedings of the 7th international conference on cognitive modeling, Trieste (ICCM 2006). Edizioni Goliardiche, Trieste, pp 349–350 Google Scholar
  4. 4.
    Cuayáhuitl H, Renals S, Lemon O, Shimodaira H (2010) Evaluation of a hierarchical reinforcement learning spoken dialogue system. Comput Speech Lang 24(2):395–429 CrossRefGoogle Scholar
  5. 5.
    Habel C, Eschenbach C (1997) Abstract structures in spatial cognition. In: Freksa C, Jantzen M, Valk R (eds) Foundations of computer science: potential–theory–cognition. Springer, Berlin, pp 369–378 CrossRefGoogle Scholar
  6. 6.
    Habel S, Werner S (1999) Special issue on spatial reference systems. Spat Cogn Comput, 4(1) Google Scholar
  7. 7.
    Hoare CAR (1985) Communicating sequential processes. Prentice Hall, New York zbMATHGoogle Scholar
  8. 8.
    Hölscher C, Buechner SJ, Meilinger T, Strube G (2009) Adaptivity of wayfinding strategies in a multi-building ensemble: the effects of spatial structure, task requirements and metric information. J Environ Psychol 29(2):208–219 Google Scholar
  9. 9.
    Knauff M, Rauh R, Schlieder C (1995) Preferred mental models in qualitative spatial reasoning: a cognitive assessment of allen’s calculus. In: Proceedings of the seventeenth annual conference of the cognitive science society. Erlbaum, Hillsdale, pp 200–205 Google Scholar
  10. 10.
    Montello DR (1993) Scale and multiple representations of space. In: Frank AU, Campari I (eds) Spatial information theory—a theoretical basis for GIS (COSIT’93). Springer, Berlin, pp 312–321 Google Scholar
  11. 11.
    Piaget J, Inhelder B (1956) A child’s conception of space. Routledge & Kegan Paul, London Google Scholar
  12. 12.
    Ross R, Shi H, Vierhuff T, Krieg-Brückner B, Bateman J (2005) Towards dialogue based shared control of navigating robots. In: Freksa C, Knauff M, Krieg-Brückner B, Nebel B, Barkowsky T (eds) Spatial cognition IV: reasoning, action, interaction. Springer, Berlin/Heidelberg, pp 478–499 CrossRefGoogle Scholar
  13. 13.
    Schill K, Zetzsche C, Hois J (2009) A belief-based architecture for scene analysis: from sensorimotor features to knowledge and ontology. Fuzzy Sets Syst 160(10):1507–1516 CrossRefGoogle Scholar
  14. 14.
    Schultheis H, Barkowsky T, Bertel S (2006) LTM-C—an improved long-term memory for cognitive architectures. In: Fum D, del Missier F, Stocco A (eds) Proceedings of the 7th international conference on cognitive modeling, Trieste (ICCM 2006). Edizioni Goliardiche, Trieste, pp 274–279 Google Scholar
  15. 15.
    Schultheis H, Bertel S, Barkowsky T, Seifert I (2007) The spatial and the visual in mental spatial reasoning: an ill-posed distinction. In: Barkowsky T, Knauff M, Ligozat G, Montello DR (eds) Spatial cognition V: reasoning, action, interaction. Springer, Berlin, pp 191–209 CrossRefGoogle Scholar
  16. 16.
    Sloman A (1975) Afterthoughts on analogical representations. In: Proc theoretical issues in natural language processing, pp 164–168 Google Scholar
  17. 17.
    Tenbrink T (2007) Space, time, and the use of language: an investigation of relationships. Mouton de Gruyter, Berlin Google Scholar
  18. 18.
    Tenbrink T, Ross RJ, Thomas K, Dethlefs N, Andonova E (2010) Negotiating routes in map-based human-human and human-computer dialogue: a comparative analysis. J Vis Lang Comput. doi: 10.1016/j.jvlc.2010.07.001 Google Scholar
  19. 19.
    Zetzsche C, Wolter J, Galbraith C, Schill K (2009) Representation of space: image-like or sensorimotor. Spat Vis 22(5):409–424 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Freksa
    • 1
  • H. Schultheis
    • 1
  • K. Schill
    • 1
  • T. Tenbrink
    • 1
  • T. Barkowsky
    • 1
  • C. Hölscher
    • 2
  • B. Nebel
    • 3
  1. 1.SFB/TR 8 Spatial CognitionUniversität BremenBremenGermany
  2. 2.Center for Cognitive ScienceUniversität FreiburgFreiburgGermany
  3. 3.Institut für InformatikUniversität FreiburgFreiburgGermany

Personalised recommendations