KI - Künstliche Intelligenz

, Volume 24, Issue 2, pp 105–113 | Cite as

Sub-daily Staff Scheduling for a Logistics Service Provider

  • Maik Günther
  • Volker NissenEmail author


The current paper uses a scenario from logistics to show that solution approaches based on metaheuristics, and in particular particle swarm optimization (PSO) can significantly add to the improvement of staff scheduling in practice. Sub-daily planning, which is the focus of our research offers considerable productivity reserves for companies but also creates complex challenges for the planning software. Modifications of the traditional PSO method are required for a successful application to scheduling software. Results are compared to different variants of the evolution strategy (ES). Both metaheuristics significantly outperform manual planning, with PSO delivering the best overall results.


Staff scheduling Sub-daily planning Particle swarm optimization Combinatorial optimization Evolution strategy 


  1. 1.
    ATOSS Software AG, Heidelberg FH (eds) (2006) Standort Deutschland 2006. Zukunftssicherung durch intelligentes Personalmanagement, München Google Scholar
  2. 2.
    Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, London zbMATHGoogle Scholar
  3. 3.
    Bäck T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of evolutionary computation. Institute of Physics Publishing, Bristol zbMATHGoogle Scholar
  4. 4.
    Beyer HG, Schwefel HP (2002) Evolution strategies: a comprehensive introduction. Nat Comput 1:3–52 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Blöchlinger I (2004) Modeling staff scheduling problems. A tutorial. Eur J Oper Res 158:533–542 CrossRefGoogle Scholar
  6. 6.
    Brodersen O (2008) Eignung schwarmintelligenter Verfahren für die betriebliche Entscheidungsunterstützung. Cuvillier, Göttingen Google Scholar
  7. 7.
    Chu SC, Chen YT, Ho JH (2006) Timetable scheduling using particle swarm optimization. In: Proceedings of the international conference on innovative computing, information and control (ICICIC Beijing 2006), vol 3, pp 324–327 Google Scholar
  8. 8.
    Ernst AT, Jiang H, Krishnamoorthy M, Owens B, Sier D (2002) An annotated bibliography of personnel scheduling and rostering. Ann OR 127:21–144 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fukuyama Y (2003) Fundamentals of particle swarm optimization techniques. In: Lee KY, El-Sharkawi MA (eds) Modern heuristic optimization techniques with applications to power systems. Wiley-IEEE Press, New York, pp 24–51 Google Scholar
  10. 10.
    Garey MR, Johnson DS (1979) Computers and intractability. A guide to the theory of NP-completeness. Freeman, New York zbMATHGoogle Scholar
  11. 11.
    Herdy M (1990) Application of the ‘evolutionsstrategie’ to discrete optimization problems. In: Schwefel HP, Männer R (eds) Parallel problem solving from nature. Springer, Berlin, pp 188–192 Google Scholar
  12. 12.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc of the IEEE int conf on neural networks. IEEE, New York, pp 1942–1948 CrossRefGoogle Scholar
  13. 13.
    Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Kaufmann, New York Google Scholar
  14. 14.
    Kragelund L, KabelT (1998) Employee timetabling. an empirical study. Master’s thesis, Department of Computer Science, University of Aarhus, Denmark Google Scholar
  15. 15.
    Li R, Emmerich MTM, Bovenkamp EGP, Eggermont J, Bäck T, Dijkstra J, Reiber JHC (2006) Mixed integer evolution strategies and their application to intravascular ultrasound image analysis. In: Rothlauf F (ed) Applications of evolutionary computation. LNCS, vol 3907. Springer, Berlin, pp 415–426 CrossRefGoogle Scholar
  16. 16.
    Meisels A, Schaerf A (2003) Modelling and solving employee timetabling. Ann Math Artif Intell 39:41–59 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nissen V (1994) Solving the quadratic assignment problem with clues from nature. IEEE Trans Neural Netw 5(1):66–72 CrossRefGoogle Scholar
  18. 18.
    Nissen V, Gold S (2008) Survivable network design with an evolution strategy. In: Yang A, Shan Y, Bui LT (eds) Success in evolutionary computation. Studies in computational intelligence. Springer, Berlin, pp 263–283 CrossRefGoogle Scholar
  19. 19.
    Nissen V, Günther M (2009) Staff scheduling with particle swarm optimization and evolution strategies. In: Cotta C, Cowling P (eds) EvoCOP. LNCS, vol 5482. Springer, Berlin, pp 228–239 Google Scholar
  20. 20.
    Parsopoulos KE, Vrahatis MN (2002) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1:235–306 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Poli R (2007) An analysis of publications on particle swarm optimization. Report CSM-469, Dep of Computer Science, University of Essex, England Google Scholar
  22. 22.
    Proudfoot Consulting (2007) Produktivitätsbericht 2007. Company Report Google Scholar
  23. 23.
    Rudolph G (1994) An evolutionary algorithm for integer programming. In: Davidor Y, Schwefel HP, Männer R (eds) PPSN III. LNCS, vol 866. Springer, Berlin, pp 139–148 Google Scholar
  24. 24.
    Scherf B (2005) Wirtschaftliche Nutzenaspekte der Personaleinsatzplanung. In: Fank M, Scherf B (eds) Handbuch Personaleinsatzplanung. Datakontext, Köln, pp 55–83 Google Scholar
  25. 25.
    Schindler B, Rothlauf F, Pesch E (2002) Evolution strategies, network random keys, and the one-max tree problem. In: Applications of evolutionary computing: EvoWorkshops 2002. LNCS, vol 2279. Springer, Berlin, pp 29–40 CrossRefGoogle Scholar
  26. 26.
    Tasgetiren MF, Sevkli M, Liang YC, Gencyilmaz G (2004) Particle swarm optimization algorithm for single machine total weighted tardiness problem. In: Proceedings of the CEC 2004. IEEE, New York, pp 1412–1419 Google Scholar
  27. 27.
    Tien J, Kamiyama A (1982) On manpower scheduling algorithms. SIAM Rev 24(3):275–287 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Vanden Berghe G (2002) An advanced model and novel meta-heuristic solution methods to personnel scheduling in healthcare. Thesis, University of Gent Google Scholar
  29. 29.
    Veeramachaneni K (2003) Optimization using particle swarm with near neighbor interactions. In: GECCO-2003. LNCS, vol 2723. Springer, Berlin, pp 110–121 CrossRefGoogle Scholar
  30. 30.
    Veeramachaneni K, Osadciw L, Kamath G (2007) Probabilistically driven particle swarms for optimization of multi-valued discrete problems: design and analysis. In: Proceedings of the IEEE SIS 2007, Honolulu, 2007. IEEE, New York, pp 141–149 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Information Systems in ServicesTechnical University of IlmenauIlmenauGermany

Personalised recommendations