Advertisement

KI - Künstliche Intelligenz

, Volume 24, Issue 1, pp 25–33 | Cite as

Small is Again Beautiful in Description Logics

  • Franz Baader
  • Carsten Lutz
  • Anni-Yasmin Turhan
Fachbeitrag

Abstract

The Description Logic (DL) research of the last 20 years was mainly concerned with increasing the expressive power of the employed description language without losing the ability of implementing highly-optimized reasoning systems that behave well in practice, in spite of the ever increasing worst-case complexity of the underlying inference problems. OWL DL, the standard ontology language for the Semantic Web, is based on such an expressive DL for which reasoning is highly intractable. Its sublanguage OWL Lite was intended to provide a tractable version of OWL, but turned out to be only of a slightly lower worst-case complexity than OWL DL. This and other reasons have led to the development of two new families of light-weight DLs, \(\mathcal{EL}\) and DL-Lite, which recently have been proposed as profiles of OWL 2, the new version of the OWL standard. In this paper, we give an introduction to these new logics, explaining the rationales behind their design.

Keywords

Knowledge representation Description logics Automated reasoning 

References

  1. 1.
    Acciarri A, Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Palmieri M, Rosati R (2005) QUONTO QUerying ONTOlogies. In: Proc of the nat conf on AI (AAAI’05) Google Scholar
  2. 2.
    Artale A, Calvanese D, Kontchakov R, Zakharyaschev M (2007) DL-Lite in the light of first-order logic. In: Proc of the nat conf on AI (AAAI’07) Google Scholar
  3. 3.
    Artale A, Calvanese D, Kontchakov R, Zakharyaschev M (2009) DL-Lite without the unique name assumption. In: Proc of the description logic WS (DL’09), CEUR Google Scholar
  4. 4.
    Baader F (1990) Terminological cycles in KL-ONE-based knowledge representation languages. In: Proc of the nat conf on AI (AAAI’90) Google Scholar
  5. 5.
    Baader F, Brandt S, Lutz C (2005) Pushing the \(\mathcal{EL}\) envelope. In: Proc of the int joint conf on AI (IJCAI’05) Google Scholar
  6. 6.
    Baader F, Brandt S, Lutz C (2008) Pushing the \(\mathcal{EL}\) envelope further. In: Proc of the Int WS on OWL: experiences and directions (OWLED’08) Google Scholar
  7. 7.
    Baader F, Buchheit M, Hollunder B (1996) Cardinality restrictions on concepts. Artif Intell 88(1–2):195–213 zbMATHCrossRefGoogle Scholar
  8. 8.
    Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) (2003) The description logic handbook: theory, implementation, and applications. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  9. 9.
    Baader F, Franconi E, Hollunder B, Nebel B, Profitlich H-J (1994) An empirical analysis of optimization techniques for terminological representation systems or: making KRIS get a move on. Appl AI Spec Iss on KB Management Google Scholar
  10. 10.
    Baader F, Hanschke P (1991) A schema for integrating concrete domains into concept languages. In: Proc of the int joint conf on AI (IJCAI’91) Google Scholar
  11. 11.
    Baader F, Horrocks I, Sattler U (2003) Description logics. In: Handbook on ontologies. Int handbooks in information systems. Springer, Berlin Google Scholar
  12. 12.
    Baader F, Küsters R, Molitor R (1999) Computing least common subsumers in description logics with existential restrictions. In: Proc of the int joint conf on AI (IJCAI’99) Google Scholar
  13. 13.
    Baader F, Lutz C, Suntisrivaraporn B (2005) Is tractable reasoning in extensions of the description logic \(\mathcal{EL}\) useful in practice? In: Proc of the int WS on methods for modalities (M4M-05) Google Scholar
  14. 14.
    Baader F, Lutz C, Suntisrivaraporn B (2006) CEL—a polynomial-time reasoner for life science ontologies. In: Proc of the int joint conf on autom reasoning (IJCAR’06). LNAI, vol 4130 Google Scholar
  15. 15.
    Baader F, Sattler U (2001) An overview of tableau algorithms for description logics. Stud Log 69:5–40 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Brachman RJ, Schmolze JG (1985) An overview of the KL-ONE knowledge representation system. Cogn Sci 9(2) Google Scholar
  17. 17.
    Brandt S (2004) Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: Proc of the Eur conf on AI (ECAI’04) Google Scholar
  18. 18.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2005) DL-Lite: tractable description logics for ontologies. In: Proc of the nat conf on AI (AAAI’05) Google Scholar
  19. 19.
    Calvanese D, de Giacomo G, Lembo D, Lenzerini M, Rosati R (2006) Data complexity of query answering in description logics. In: Proc of the int conf on principles of knowledge representation and reasoning (KR’06) Google Scholar
  20. 20.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007) Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J Autom Reason 39(3):385–429 zbMATHCrossRefGoogle Scholar
  21. 21.
    Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Poggi A, Rosati R (2006) Linking data to ontologies: the description logic DL-LiteA. In: Proc of the int WS on OWL: experiences and directions (OWLED’06). CEUR Google Scholar
  22. 22.
    Fitting M (1972) Tableau methods of proof for modal logics. Notre Dame J Form Log 13(2):237–247 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Haarslev V, Möller R (2001) High performance reasoning with very large knowledge bases: a practical case study. In: Proc of the int joint conf on AI (IJCAI’01) Google Scholar
  24. 24.
    Haarslev V, Möller R (2001) RACER system description. In: Proc of the int joint conf on autom reasoning (IJCAR’01). LNAI, vol 2083 Google Scholar
  25. 25.
    Haarslev V, Möller R (2008) On the scalability of description logic instance retrieval. J Autom Reason 41(2):99–142 zbMATHCrossRefGoogle Scholar
  26. 26.
    Hollunder B, Baader F (1991) Qualifying number restrictions in concept languages. In: Proc of the int conf on the principles of knowledge representation and reasoning (KR’91) Google Scholar
  27. 27.
    Hollunder B, Nutt W, Schmidt-SchaußM (1990) Subsumption algorithms for concept description languages. In: Proc of the Eur conf on AI (ECAI’90) Google Scholar
  28. 28.
    Horrocks I (1998) Using an expressive description logic: FaCT or fiction? In: Proc of the int conf on principles of knowledge representation and reasoning (KR’98) Google Scholar
  29. 29.
    Horrocks I (2003) Implementation and optimization techniques. In: Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF (eds) The description logic handbook: theory, implementation, and applications. Cambridge Univ. Press, Cambridge Google Scholar
  30. 30.
    Horrocks I, Kutz O, Sattler U (2006) The even more irresistible \(\mathcal{SROIQ}\). In: Proc of the int conf on principles of knowledge representation and reasoning (KR’06) Google Scholar
  31. 31.
    Horrocks I, Patel-Schneider PF (1999) Optimizing description logic subsumption. J Logic Comput 9(3):267–293 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Horrocks I, Patel-Schneider PF (2004) Reducing OWL entailment to description logic satisfiability. J Web Sem 1(4):345–357 Google Scholar
  33. 33.
    Horrocks I, Patel-Schneider PF, van Harmelen F (2003) From SHIQ and RDF to OWL: the making of a web ontology language. J Web Sem 1(1):7–26 Google Scholar
  34. 34.
    Horrocks I, Sattler U (2005) A tableaux decision procedure for \(\mathcal{SHOIQ}\). In: Proc of the int joint conf on AI (IJCAI’05) Google Scholar
  35. 35.
    Horrocks I, Sattler U, Tobies S (2000) Practical reasoning for very expressive description logics. J Interest Group Pure Appl Logic 8(3):239–264 zbMATHMathSciNetGoogle Scholar
  36. 36.
    Kazakov Y (2008) \(\mathcal{RIQ}\) and \(\mathcal{SROIQ}\) are harder than \(\mathcal{SHOIQ}\). In: Proc of the int conf on principles of knowledge representation and reasoning (KR’08) Google Scholar
  37. 37.
    Kontchakov R, Lutz C, Toman D, Wolter F, Zakharyaschev M (2009) Combined FO rewritability for conjunctive query answering in DL-Lite. In: Proc of the description logic WS (DL’09) Google Scholar
  38. 38.
    Levesque HJ, Brachman RJ (1987) Expressiveness and tractability in knowledge representation and reasoning. Comput Intell 3:78–93 CrossRefGoogle Scholar
  39. 39.
    Lutz C (2008) The complexity of conjunctive query answering in expressive description logics. In: Proc of the int joint conf on autom reasoning (IJCAR’08). LNAI, vol 5195 Google Scholar
  40. 40.
    Lutz C, Toman D, Wolter F (2008) Conjunctive query answering in \(\mathcal{EL}\) using a database system. In: In Proc of the int WS on OWL: experiences and directions (OWLED’08) Google Scholar
  41. 41.
    Lutz C, Toman D, Wolter F (2009) Conjunctive query answering in the description logic \(\mathcal{EL}\) using a relational database system. In: Proc of the int joint conf on AI (IJCAI’09) Google Scholar
  42. 42.
    MacGregor R (1991) The evolving technology of classification-based knowledge representation systems. In: Principles of semantic networks. Kaufmann, Los Altos Google Scholar
  43. 43.
    Mays E, Dionne R, Weida R (1991) K-REP system overview. SIGART Bull 2(3):93–97 CrossRefGoogle Scholar
  44. 44.
    Nebel B (1988) Computational complexity of terminological reasoning in BACK. Artif Intell 34(3):371–383 zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Nebel B (1990) Terminological reasoning is inherently intractable. Artif Intell 43(2):235–249 zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Ortiz M, Calvanese D, Eiter T (2008) Data complexity of query answering in expressive description logics via tableaux. J Autom Reason 41(1):61–98 zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Patel-Schneider PF (1984) Small can be beautiful in knowledge representation. In: Proc of the IEEE WS on knowledge-based systems Google Scholar
  48. 48.
    Peltason Ch (1991) The BACK system—an overview. SIGART Bull 2(3):114–119 CrossRefGoogle Scholar
  49. 49.
    Schmidt-SchaußM (1989) Subsumption in KL-ONE is undecidable. In: Proc of the int conf on the principles of knowledge representation and reasoning (KR’89) Google Scholar
  50. 50.
    Schmidt-SchaußM, Smolka G (1991) Attributive concept descriptions with complements. Artif Intell 48(1):1–26 zbMATHCrossRefGoogle Scholar
  51. 51.
    Sirin E, Parsia B (2004) Pellet: an OWL DL reasoner. In: Proc of the description logic WS (DL’04) Google Scholar
  52. 52.
    Suntisrivaraporn B (2009) Polynomial-time reasoning support for design and maintenance of large-scale biomedical ontologies. PhD thesis, Fakultät Informatik, TU Dresden Google Scholar
  53. 53.
    Tsarkov D, Horrocks I (2006) FaCT++ description logic reasoner: system description. In: Proc of the int joint conf on autom reasoning (IJCAR’06). LNAI, vol 4130 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für Theoretische InformatikTU DresdenDresdenDeutschland
  2. 2.Universität Bremen, Fachbereich 03, Postfach 330440BremenDeutschland

Personalised recommendations