In silico characterization of Leptospira interrogans DNA ligase A and delineation of its antimicrobial stretches

  • Prasanta Kumar Koustasa MishraEmail author
  • Ramadevi Nimmanapalli
Original Article



In the present study, an attempt is being made to characterize the DNA ligase A (LigA) of Leptospira interrogans by computational methods.


Several prediction servers (SwissProt, MoByle, TMHMM, PSIPRED, SignalP, etc.) were used to predict and interpret the physico-chemical parameters associated with LigA. A three-dimensional (3D) structure of the protein was created by homology-based modeling (I-TASSER). DNA-binding regions (PATCHDOCK) and interactome (STRINGS) of the protein were also predicted. A phylogenetic tree was constructed by MEGA version X. Finally, amino acid residues with antimicrobial activity were determined from the LigA sequence by AntiBP server.


Domains responsible for oligonucleotide binding (OB), BRCT (BRCA1 carboxy-terminal), and motifs like helix hairpin helix (HhH) were found to be present in the protein designating the super family it belongs to. Moreover, consensus residues, i.e., -KX/IDG- responsible for adenylation, are also found to be conserved within the amino acid sequence. In silico mutational analysis suggested that replacing any of the charged residues in the consensus (K or D) can lead to catalytic instability of the enzyme. Further, the protein was scanned for antimicrobial peptide (AMPs). Ten different stretches were found to have a potential bactericidal effect with significant scores.


LigA of Leptospira interrogans is an acidic protein rich in alpha helixes which also contain 10 potential antimicrobial peptides in its amino acid sequence.


DNA ligase Structural co-ordinates In silico Antimicrobial peptides Leptospira 



The authors are highly thankful to the Dean, FVAS, RGSC-BHU, and Vice-Chancellor, Banaras Hindu University, for providing the required supports during the analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals


Informed consent



  1. Alland C, Moreews F, Boens D, Carpentier M, Chiusa S, Lonquety M, Renault N, Wong Y, Cantalloube H, Chomilier J, Hochez J (2005) RPBS: a web resource for structural bioinformatics. Nucleic Acids Res 33:W44–W49PubMedPubMedCentralCrossRefGoogle Scholar
  2. Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420CrossRefGoogle Scholar
  3. Bauer RJ, Zhelkovsky A, Bilotti K, Crowell LE, Evans TC Jr, McReynolds LA, Lohman GJ (2017) Comparative analysis of the end-joining activity of several DNA ligases. PLoS One 12:e0190062PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10:e1003440PubMedPubMedCentralCrossRefGoogle Scholar
  5. Buchan DW, Jones DT (2019) The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res 47:W402–W407PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chen K, Mizianty MJ, Kurgan L (2011) Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors. Bioinformatics 28:331–341PubMedCrossRefPubMedCentralGoogle Scholar
  7. Choi Y, Chan AP (2019) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747CrossRefGoogle Scholar
  8. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, Stein C, Abela-Ridder B, Ko AI (2015) Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9:e0003898PubMedPubMedCentralCrossRefGoogle Scholar
  9. Drew ED, Mavridis L, Janes RW (2018) PDB2CD: a web-based application for the generation of circular dichroism spectra from protein atomic coordinates. Biophys J 114:46aCrossRefGoogle Scholar
  10. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer EL (2018) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432PubMedCentralCrossRefGoogle Scholar
  11. Gajiwala KS, Pinko C (2014) Structural rearrangement accompanying NAD+ synthesis within a bacterial DNA ligase crystal. Structure 12:1449–1459CrossRefGoogle Scholar
  12. Haliloglu T, Bahar I, Erman B (1997) Gaussian dynamics of folded proteins. Phys Rev Lett 79:3090CrossRefGoogle Scholar
  13. Hiller K, Grote A, Maneck M, Münch R, Jahn D (2006) JVirGel 2.0: computational prediction of proteomes separated via two-dimensional gel electrophoresis under consideration of membrane and secreted proteins. Bioinformatics 22:2441–2443PubMedCrossRefPubMedCentralGoogle Scholar
  14. Honig B (1999) Protein folding: from the levinthal paradox to structure prediction. J Mol Biol 293:283–293PubMedCrossRefPubMedCentralGoogle Scholar
  15. Inada R, Ido Y, Hoki R, Kaneko R, Ito H (1916) The etiology, mode of infection, and specific therapy of Weil’s disease (spirochaetosis icterohaemorrhagica). J Exp Med 23:377PubMedPubMedCentralCrossRefGoogle Scholar
  16. Jiang D, Guo H, Xu C, Chang J, Gu B, Wang L, Block TM, Guo JT (2008) Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J Virol 82:1665–1678PubMedCrossRefPubMedCentralGoogle Scholar
  17. Johnson RC (1984) Leptospira. Bergey’s manual of systematic bacteriology 1, pp 62–67Google Scholar
  18. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8:275–282CrossRefGoogle Scholar
  19. Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39:10957–10970PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kuhn-Nentwig L, Fedorova IM, Lüscher BP, Kopp LS, Trachsel C, Schaller J, Vu XL, Seebeck T, Streitberger K, Nentwig W, Sigel E (2012) A venom-derived neurotoxin, CsTx-1, from the spider Cupiennius salei exhibits cytolytic activities. J Biol Chem 287:25640–25649PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549PubMedPubMedCentralCrossRefGoogle Scholar
  22. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302PubMedPubMedCentralCrossRefGoogle Scholar
  23. Lata S, Sharma BK, Raghava GP (2007) Analysis and prediction of antibacterial peptides. BMC bioinformatics 8:263PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lee JY, Chang C, Song HK, Moon J, Yang JK, Kim HK, Kwon ST, Suh SW (2000) Crystal structure of NAD+-dependent DNA ligase: modular architecture and functional implications. EMBO J 19:1119–1129PubMedPubMedCentralCrossRefGoogle Scholar
  25. Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:W590–W594PubMedPubMedCentralCrossRefGoogle Scholar
  26. Mavridis L, Janes RW (2016) PDB2CD: a web-based application for the generation of circular dichroism spectra from protein atomic coordinates. Bioinformatics 33:56–63PubMedPubMedCentralCrossRefGoogle Scholar
  27. Miesel L, Kravec C, Xin AT, McMonagle P, Ma S, Pichardo J, Feld B, Barrabee E, Palermo R (2007) A high-throughput assay for the adenylation reaction of bacterial DNA ligase. Anal Biochem 366:9–17PubMedCrossRefPubMedCentralGoogle Scholar
  28. Nandakumar J, Nair PA, Shuman S (2007) Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate. Mol Cell 26:257–271PubMedCrossRefPubMedCentralGoogle Scholar
  29. Pergolizzi G, Wagner GK, Bowater RP (2016) Biochemical and structural characterization of DNA ligases from bacteria and archaea. Biosci Rep 36:e00391PubMedCentralCrossRefGoogle Scholar
  30. Rao RS, Gupta N, Bhalla P, Agarwal SK (2003) Leptospirosis in India and the rest of the world. Braz J Infect Dis 7:178–193CrossRefGoogle Scholar
  31. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367PubMedPubMedCentralCrossRefGoogle Scholar
  32. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci 95:5857–5864PubMedCrossRefPubMedCentralGoogle Scholar
  33. Shin WH, Lee GR, Heo L, Lee H, Seok C (2014) Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Design 2:1–1Google Scholar
  34. Shuman S (2009) DNA ligases: progress and prospects. J Biol Chem 284:17365–17369PubMedPubMedCentralCrossRefGoogle Scholar
  35. Si J, Zhang Z, Lin B, Schroeder M, Huang B (2011) MetaDBSite: a meta approach to improve protein DNA-binding sites prediction. BMC Syst Biol 5:S7PubMedPubMedCentralCrossRefGoogle Scholar
  36. Sonnhammer EL, Von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. InIsmb 6:175–182Google Scholar
  37. Swift RV, Amaro RE (2009) Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms. Expert Opin Drug Discovery 4:1281–1294CrossRefGoogle Scholar
  38. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ (2018) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613PubMedCentralCrossRefPubMedGoogle Scholar
  39. Timson DJ, Wigley DB (1999) Functional domains of an NAD+-dependent DNA ligase. J Mol Biol 285:73–83PubMedCrossRefGoogle Scholar
  40. Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T (2006) DNA ligases: structure, reaction mechanism, and function. Chem Rev 106:687–699PubMedCrossRefPubMedCentralGoogle Scholar
  41. Viklund H, Bernsel A, Skwark M, Elofsson A (2008) SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics 24:2928–2929PubMedCrossRefPubMedCentralGoogle Scholar
  42. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2015) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097PubMedPubMedCentralCrossRefGoogle Scholar
  43. Wang LK, Zhu H, Shuman S (2009) Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli DNA ligase (LigA). J Biol Chem 284:8486–8494PubMedPubMedCentralCrossRefGoogle Scholar
  44. Wilkinson A, Day J, Bowater R (2001) Bacterial DNA ligases. Mol Microbiol 40:1241–1248PubMedCrossRefPubMedCentralGoogle Scholar
  45. Wodak SJ, Vagin AA, Richelle J, Das U, Pontius J, Berman HM (2012) Deviations from standard atomic volumes as a quality measure for protein crystal structures, International Tables for Crystallography F, pp 664–665Google Scholar
  46. Yaakob Y, Rodrigues KF, John DV (2015) Leptospirosis: recent incidents and available diagnostics–a review. Med J Malaysia 70:351Google Scholar
  47. Yan Y, Zhang D, Zhou P, Li B, Huang SY (2017) HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45:W365–W373PubMedPubMedCentralCrossRefGoogle Scholar
  48. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43:W306–W313PubMedPubMedCentralCrossRefGoogle Scholar
  50. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309PubMedPubMedCentralCrossRefGoogle Scholar
  51. Zhang ZH, Bharatham K, Sherman WA, Mihalek I (2010) deconSTRUCT: general purpose protein database search on the substructure level. Nucleic Acids Res 38:W590–W594PubMedPubMedCentralCrossRefGoogle Scholar
  52. Zhou AQ, O’Hern CS, Regan L (2011) Revisiting the Ramachandran plot from a new angle. Protein Sci 20:1166–1171PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Università degli studi di Milano 2019

Authors and Affiliations

  1. 1.Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South CampusBanaras Hindu UniversityMirzapurIndia

Personalised recommendations