Advertisement

Annals of Microbiology

, Volume 69, Issue 9, pp 923–931 | Cite as

Methicillin resistance and clonal diversity of Staphylococcus aureus isolated from nasal samples of healthy horses in Iran

  • Habib Dastmalchi SaeiEmail author
  • Elahe Safari
Original Article
  • 36 Downloads

Abstract

Purpose

The aims of the current study were to investigate the frequency and genetic diversity of Staphylococcus aureus from healthy horses, including both methicillin-resistant (MRSA) and -susceptible S. aureus (MSSA).

Methods

Three hundred-one nasal swabs were collected from healthy horses in three provinces, Iran. Sixty-one of the 301 tested samples contained S. aureus (20.3%), among which five were MRSA. Isolates were typed by spa PCR-RFLP and agr typing, followed by sequence-based spa typing and MLST on representative strains from each restriction pattern and SCCmec typing for MRSA strains. The presence of Panton-Valentine Leukocidin (PVL) encoding genes was also tested using PCR.

Results

Eight distinct RFLP patterns (designated as N1-N8) were observed, with N2 (23/61; 37.7%) and N4 (18/61; 29.5%) the most common. On sequencing, N1-N8 patterns were found to be of clonal types ST15-t084, ST2151-t2484, ST291-t937, ST1-t127, and ST1-t1383, ST700-t11926, ST133-t1166, and ST1278-t12595, respectively. No PVL-positive S. aureus were detected. Five MRSA were identified as ST2151-t2484-SCCmecIVa (2 isolates), ST15-t084-SCCmecIVa, ST1-t1383-SCCmecIVa, and t12595-SCCmecIVa (one isolate each). Majority of S. aureus isolates were ascribed to agr types III (n = 30; 49.2%) and IV (n = 28; 45.9%), followed by types II (n = 2, 3.3%) and I (n = 1, 1.6%). The carriage of S. aureus was found to be associated with geographic locations.

Conclusions

This study for the first time describes the circulation of diverse clones of MSSA and MRSA among the Iranian horse population. This may pose a public health risk, which supports the need for their epidemiological monitoring.

Keywords

Horse Methicillin resistant Nasal Clonal diversity S. aureus 

Notes

Acknowledgments

The authors are very grateful to Professor Alexander Mellmann from University of Münster, Institute of Hygiene, Germany, for conducting the BURP analysis. We are also thankful to Dr. M. Morovati, Dr. G. Jalilzadeh and Dr. S. Rostami for their help in sample collection, and Mrs. Mitra Panahi and Dr. S. Hosseinzadeh for technical assistance.

Funding information

The Research Deputy of Urmia University financially supported the current investigation.

Compliance with ethical standards

The study protocol was approved by the Urmia University Animal Ethics Committee (ethical clearance number 1241).

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable.

Informed consent

The authors confirm that this article’s content has no animal or human participants in research.

References

  1. Agabou A, Ouchenane Z, Ngba Essebe C, Khemissi S, Chehboub MTE, Chehboub IB, Sotto A, Dunyach-Remy C, Lavigne JP (2017) Emergence of nasal carriage of ST80 and ST152 PVL+ Staphylococcus aureus isolates from livestock in Algeria. Toxins 9Google Scholar
  2. AL-Tam F, Brunel AS, Bouzinbi N, Corne P, Banuls AL, Shahbazkia HR (2012) DNAGear-a free software for spa type identification in Staphylococcus aureus. BMC Res Notes 5:642CrossRefGoogle Scholar
  3. Asghar AH (2014) Molecular characterization of methicillin-resistant Staphylococcus aureus isolated from tertiary care hospitals. Pak J Med Sci 30:698–702CrossRefGoogle Scholar
  4. Axon J, Carrick J, Barton M, Collins N, Russell C, Kiehne J, Coombs G (2011) Methicillin-resistant Staphylococcus aureus in a population of horses in Australia. Aust Vet J 89:221–225CrossRefGoogle Scholar
  5. Barbagelata MS, Alvarez L, Gordiola M, Tuchscherr L, von Eiff C, Becker K, Sordelli D, Buzzola F (2011) Auxotrophic mutant of Staphylococcus aureus interferes with nasal colonization by the wild type. Microbes Infect 13:1081–1090CrossRefGoogle Scholar
  6. Basanisi MG, La Bella G, Nobili G, Franconieri I, La Salandra G (2017) Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol 62:141–146CrossRefGoogle Scholar
  7. Boye K, Bartels MD, Andersen IS, Moller JA, Westh H (2007) A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin Microbiol Infect 13:725–727CrossRefGoogle Scholar
  8. Brakstad OG, Aasbakk K, Maeland JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30:1654–1660Google Scholar
  9. Burton S, Reid-Smith R, McClure JT, Weese JS (2008) Staphylococcus aureus colonization in healthy horses in Atlantic Canada. Can Vet J 49:797–799Google Scholar
  10. Carfora V, Caprioli A, Grossi I, Pepe M, Alba P, Lorenzetti S, Amoruso R, Sorbara L, Franco A, Battisti A (2016) A methicillin-resistant Staphylococcus aureus (MRSA) sequence type 8, spa type t11469 causing infection and colonizing horses in Italy. Pathog Dis 74:ftw025CrossRefGoogle Scholar
  11. CLSI (2009) Performance standards for antimicrobial Susceptability testing. Clinical and laboratory standards institute. Wayne, PAGoogle Scholar
  12. Cohn LA, Middleton JR (2010) A veterinary perspective on methicillin-resistant staphylococci. J Vet Emerg Crit Care 20:31–45CrossRefGoogle Scholar
  13. Cuny C, Strommenger B, Witte W, Stanek C (2008) Clusters of infections in horses with MRSA ST1, ST254, and ST398 in a veterinary hospital. Microb Drug Resist 14:307–310CrossRefGoogle Scholar
  14. Cuny C, Friedrich A, Kozytska S, Layer F, Nubel U, Ohlsen K, Strommenger B, Walther B, Wieler L, Witte W (2010) Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol 300:109–117CrossRefGoogle Scholar
  15. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015Google Scholar
  16. Fasihi Y, Kiaei S, Kalantar-Neyestanaki D (2017) Characterization of SCCmec and spa types of methicillin-resistant Staphylococcus aureus isolates from health-care and community-acquired infections in Kerman, Iran. J Epidemiol Glob Health 7:263–267CrossRefGoogle Scholar
  17. Gharsa H, Ben Sallem R, Ben Slama K, Gomez-Sanz E, Lozano C, Jouini A, Klibi N, Zarazaga M, Boudabous A, Torres C (2012) High diversity of genetic lineages and virulence genes in nasal Staphylococcus aureus isolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133 lineage. BMC Vet Res 8:203CrossRefGoogle Scholar
  18. Gilot P, Lina G, Cochard T, Poutrel B (2002) Analysis of the genetic variability of genes encoding the RNA III-activating components Agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J Clin Microbiol 40:4060–4067CrossRefGoogle Scholar
  19. Gopal S, Divya KC (2017) Can methicillin-resistant Staphylococcus aureus prevalence from dairy cows in India act as potential risk for community-associated infections?: a review. Vet World 10:311–318CrossRefGoogle Scholar
  20. Harmsen D, Claus H, Witte W, Rothganger J, Claus H, Turnwald D, Vogel U (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448CrossRefGoogle Scholar
  21. Havaei SA, Azimian A, Fazeli H, Naderi M, Ghazvini K, Samiee SM, Soleimani M (2013) Isolation of Asian endemic and livestock associated clones of methicillin resistant Staphylococcus aureus from ocular samples in northeastern Iran. Iran J Microbiol 5:227–232Google Scholar
  22. Islam MZ, Espinosa-Gongora C, Damborg P, Sieber RN, Munk R, Husted L, Moodley A, Skov R, Larsen J, Guardabassi L (2017) Horses in Denmark are a reservoir of diverse clones of methicillin-resistant and -susceptible Staphylococcus aureus. Front Microbiol 8:543CrossRefGoogle Scholar
  23. Japoni-Nejad A, Rezazadeh M, Kazemian H, Fardmousavi N, van Belkum A, Ghaznavi-Rad E (2013) Molecular characterization of the first community-acquired methicillin-resistant Staphylococcus aureus strains from Central Iran. Int J Infect Dis 17:e949–e954CrossRefGoogle Scholar
  24. Johler S, Layer F, Stephan R (2011) Comparison of virulence and antibiotic resistance genes of food poisoning outbreak isolates of Staphylococcus aureus with isolates obtained from bovine mastitis milk and pig carcasses. J Food Prot 74:1852–1859CrossRefGoogle Scholar
  25. Karkaba A, Benschop J, Hill KE, Grinberg A (2016) Characterisation of methicillin-resistant Staphylococcus aureus clinical isolates from animals in New Zealand, 2012-2013, and subclinical colonisation in dogs and cats in Auckland. N Z Vet J:1–6Google Scholar
  26. Katayama Y, Robinson DA, Enright MC, Chambers HF (2005) Genetic background affects stability of mecA in Staphylococcus aureus. J Clin Microbiol 43:2380–2383CrossRefGoogle Scholar
  27. Kiser KB, Cantey-Kiser JM, Lee JC (1999) Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect Immun 67:5001–5006Google Scholar
  28. Koreen L, Ramaswamy SV, Graviss EA, Naidich S, Musser JM, Kreiswirth BN (2004) spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799CrossRefGoogle Scholar
  29. Lakhundi S, Zhang K (2018) Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31:e00020–e00018CrossRefGoogle Scholar
  30. Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of Panton-valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132CrossRefGoogle Scholar
  31. Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F (2003) Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl Environ Microbiol 69:18–23CrossRefGoogle Scholar
  32. Liu J, Chen D, Peters BM, Li L, Li B, Xu Z, Shirliff ME (2016) Staphylococcal chromosomal cassettes mec (SCCmec): a mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog 101:56–67CrossRefGoogle Scholar
  33. Loncaric I, Kunzel F, Licka T, Simhofer H, Spergser J, Rosengarten R (2014) Identification and characterization of methicillin-resistant Staphylococcus aureus (MRSA) from Austrian companion animals and horses. Vet Microbiol 168:381–387CrossRefGoogle Scholar
  34. Maddox TW, Clegg PD, Diggle PJ, Wedley AL, Dawson S, Pinchbeck GL, Williams NJ (2011) Cross-sectional study of antimicrobial-resistant bacteria in horses. Part 1: prevalence of antimicrobial-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus. Equine Vet J 44:289–296CrossRefGoogle Scholar
  35. Manara S, Pasolli E, Dolce D, Ravenni N, Campana S, Armanini F, Asnicar F, Mengoni A, Galli L, Montagnani C, Venturini E, Rota-Stabelli O, Grandi G, Taccetti G, Segata N (2018) Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital. Genome Med 10:82CrossRefGoogle Scholar
  36. Mellmann A, Weniger T, Berssenbrugge C, Rothganger J, Sammeth M, Stoye J, Harmsen D (2007) Based upon repeat pattern (BURP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on spa polymorphisms. BMC Microbiol 7:98CrossRefGoogle Scholar
  37. Milheirico C, Oliveira DC, de Lencastre H (2007) Multiplex PCR strategy for subtyping the staphylococcal cassette chromosome mec type IV in methicillin-resistant Staphylococcus aureus: SCCmec IV multiplex. J Antimicrob Chemother 60 (1):42–48Google Scholar
  38. Moridi M, Masoudi AA, Vaez Torshizi R, Hill EW (2013) Mitochondrial DNA D-loop sequence variation in maternal lineages of Iranian native horses. Anim Genet 44:209–213CrossRefGoogle Scholar
  39. Murakami K, Minamide W, Wada K, Nakamura E, Teraoka H, Watanabe S (1991) Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol 29:2240–2244Google Scholar
  40. Murugadas V, Toms CJ, Reethu SA, Lalitha KV (2017) Multilocus sequence typing and staphylococcal protein a typing revealed novel and diverse clones of methicillin-resistant Staphylococcus aureus in seafood and the aquatic environment. J Food Prot 80:476–481CrossRefGoogle Scholar
  41. Ohadian Moghadam S, Pourmand MR, Mahmoudi M, Sadighian H (2015) Molecular characterization of methicillin-resistant Staphylococcus aureus: characterization of major clones and emergence of epidemic clones of sequence type (ST) 36 and ST 121 in Tehran, Iran. FEMS Microbiol Lett 362:fnv043CrossRefGoogle Scholar
  42. O'Hara FP, Suaya JA, Ray GT, Baxter R, Brown ML, Mera RM, Close NM, Thomas E, Amrine-Madsen H (2016) Spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microb Drug Resist 22:88–96CrossRefGoogle Scholar
  43. Papadopoulos P, Papadopoulos T, Angelidis AS, Boukouvala E, Zdragas A, Papa A, Hadjichristodoulou C, Sergelidis D (2018) Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in North-Western Greece. Food Microbiol 69:43–50CrossRefGoogle Scholar
  44. Peterson AE, Davis MF, Awantang G, Limbago B, Fosheim GE, Silbergeld EK (2012) Correlation between animal nasal carriage and environmental methicillin-resistant Staphylococcus aureus isolates at U.S. horse and cattle farms. Vet Microbiol 160:539–543CrossRefGoogle Scholar
  45. Sergelidis D, Papadopoulos T, Komodromos D, Sergelidou E, Lazou T, Papagianni M, Zdragas A, Papa A (2015) Isolation of methicillin-resistant Staphylococcus aureus from small ruminants and their meat at slaughter and retail level in Greece. Lett Appl Microbiol 61:498–503CrossRefGoogle Scholar
  46. Shambat S, Nadig S, Prabhakara S, Bes M, Etienne J, Arakere G (2012) Clonal complexes and virulence factors of Staphylococcus aureus from several cities in India. BMC Microbiol 12:64CrossRefGoogle Scholar
  47. Smith TC, Wardyn SE (2015) Human infections with Staphylococcus aureus CC398. Curr Environ Health Rep 2:41–51CrossRefGoogle Scholar
  48. Tokateloff N, Manning ST, Weese JS, Campbell J, Rothenburger J, Stephen C, Bastura V, Gow SP, Reid-Smith R (2009) Prevalence of methicillin-resistant Staphylococcus aureus colonization in horses in Saskatchewan, Alberta, and British Columbia. Can Vet J 50:1177–1180Google Scholar
  49. Van den Eede A, Martens A, Feryn I, Vanderhaeghen W, Lipinska U, Gasthuys F, Butaye P, Haesebrouck F, Hermans K (2012) Low MRSA prevalence in horses at farm level. BMC Vet Res 8:213CrossRefGoogle Scholar
  50. Vandendriessche S, Vanderhaeghen W, Larsen J, de Mendonca R, Hallin M, Butaye P, Hermans K, Haesebrouck F, Denis O (2014) High genetic diversity of methicillin-susceptible Staphylococcus aureus (MSSA) from humans and animals on livestock farms and presence of SCCmec remnant DNA in MSSA CC398. J Antimicrob Chemother 69:355–362CrossRefGoogle Scholar
  51. Weese JS, van Duijkeren E (2010) Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet Microbiol 140:418–429CrossRefGoogle Scholar
  52. Weese JS, Archambault M, Willey BM, Hearn P, Kreiswirth BN, Said-Salim B, McGeer A, Likhoshvay Y, Prescott JF, Low DE (2005) Methicillin-resistant Staphylococcus aureus in horses and horse personnel, 2000-2002. Emerg Infect Dis 11:430–435CrossRefGoogle Scholar
  53. Weese JS, Caldwell F, Willey BM, Kreiswirth BN, McGeer A, Rousseau J, Low DE (2006) An outbreak of methicillin-resistant Staphylococcus aureus skin infections resulting from horse to human transmission in a veterinary hospital. Vet Microbiol 114:160–164CrossRefGoogle Scholar
  54. Wichelhaus TA, Hunfeld KP, Boddinghaus B, Kraiczy P, Schafer V, Brade V (2001) Rapid molecular typing of methicillin-resistant Staphylococcus aureus by PCR-RFLP. Infect Control Hosp Epidemiol 22:294–298CrossRefGoogle Scholar
  55. Zunita Z, Bashir A, Hafizal A (2008) Occurrence of multidrug resistant Staphylococcus aureus in horses in Malaysia. Vet World 1:165–167Google Scholar

Copyright information

© Università degli studi di Milano 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of Veterinary MedicineUrmia UniversityUrmiaIran

Personalised recommendations